InDro Commander module streamlines robotics R&D

InDro Commander module streamlines robotics R&D

By Scott Simmie


Building robots is hard.

Even if you start with a manufactured platform for locomotion (very common in the case of ground robots), the work ahead can be challenging and time-consuming. How many sensors will require a power supply and data routing? What EDGE processing is needed? How will a remote operator interface with the machine? What coding will allow everything to work in unison and ensure the best data and performance possible? How will data be transmitted or stored?

That’s the hard stuff, which inevitably requires a fair bit of time and effort.

It’s that hurdle – one faced by pretty much everyone in the robotics R&D world – that led to the creation of InDro Commander.

InDro Commander



InDro Commander is a platform-agnostic module that can bolt on to pretty much any means of locomotion. In the photo above, it’s the box mounted on top of the AgileX bunker (just above the InDro logo).

Commander is, as this webpage explains, “a single box with critical software and hardware designed to simplify payload integration and enable turn-key teleoperations.” Whether you’re adding LiDAR, thermal sensors, RTK, Pan-Tilt-Zoom cameras – or pretty much any other kind of sensor – Commander takes the pain out of integration.

The module offers multiple USB inputs for sensors, allowing developers to decide on a mounting location and then simply plug them in. A powerful Jetson EDGE computer handles onboard compute functions. The complete Robot Operating System software libraries (ROS1 and ROS2) are bundled in, allowing developers to quickly access the code needed for various sensors and functions.

“Our engineering team came up with the concept of the InDro Commander after integrating and customizing our own robots,” says Philip Reece, CEO of InDro Robotics. “We realized there were hurdles common to all of them – so we designed and produced a solution. Commander vastly simplifies turning a platform into a fully functioning robot.”

Account Executive Luke Corbeth takes it further:

“The Commander serves as a “brain-box” for any UGV,” he says. “It safely houses the compute, connectivity, cameras, sensors and other hardware in an IP54 enclosure.”

It also comes in several options, depending on the client’s requirements.

“There are three ‘standard versions’ which are bundles to either be Compute Ready, Teleoperations Ready or Autonomy Ready,” adds Corbeth.

“I’ve realized over time that the value of Commander is our ability to customize it to include, or more importantly, not include specific components depending on the needs of the project and what the client already has available. In reality, most Commanders I sell include some, but not usually all, of what’s in the Commander Navigate. We’re also able to customize to specific needs or payloads.”

Below: Commander comes in multiple configurations

InDro Commander



With InDro Commander, developers can spend more time on their actual project or research – and far less time on the build.

“For end-users wanting a fully customized robot, Commander saves a huge amount of time and hassle,” says InDro Engineering Lead Arron Griffiths. “Customers using this module see immediate benefits for sensor integration, and the web-based console for remote operations provides streaming, real-time data. Commander also supports wireless charging, which is a huge bonus for remote operations.”

Commander serves as the brains for several InDro ground robots, including Sentinel. This machine was recently put through its paces over 5G in a test for EPRI, the Electric Power Research Institute.




Depending on the model, Commander can also serve as a Plug & Play device for operations over 4G or 5G networks. In fact, InDro was invited by US carrier T-Mobile to a 2022 event in Washington State. There, we demonstrated the live, remote tele-operation of a Sentinel inspection robot.

Using a simple Xbox controller plugged into a laptop at T-Mobile HQ in Bellevue WA, we operated a Sentinel in Ottawa – more than 4,000 kilometres away. There was no perceptible lag, and even untrained operators were able to easily control remote operations and cycle between the Pan Tilt Zoom camera, a thermal sensor, and a wide-angle camera used for situational awareness by the operator. Data from all sensors was displayed on the dashboard, with the ability for the operator to easily cycle between them.

Below: T-Mobile’s John Saw, Executive Vice President, Advanced & Emerging Technologies, talks about InDro Commander-enabled robots teleoperating over 5G networks 




Platforms change. Needs evolve. New sensors hit the market.

With Commander on board, developers don’t need to start from scratch. The modular design enables end-users to seamlessly upgrade platforms down the road by simply unbolting Commander and affixing it to the new set of wheels (or treads).

Below: Any sensor, including LiDAR, can be quickly integrated with InDro Commander

Teleoperated Robots



You likely know the saying: “Necessity if the mother of invention.”

InDro developed this product because we could see its utility – both for our own R&D, and for clients. We’ve put Commander to use on multiple custom InDro robots, with many more to come. (We have even created a version of this for Enterprise drones.)

On the commercial side, our clients have really benefited from the inherent modularity that the Commander provides,” says Luke Corbeth.

“Since the ‘brains’ are separate from the ‘body,’ this simplifies their ability to make the inevitable repairs or upgrades they’ll require. These clients generally care about having a high functioning robot reliably completing a repetitive task, and Commander allows us to operate and program our robots to do this.”

It can also save developers money.

“On the R&D side, the customizable nature of the Commander means they only purchase what they don’t already have,” adds Corbeth.

“For instance, many clients are fortunate enough to have some hardware already available to them whether it’s a special camera, LiDAR or a Jetson so we can support the integration of their existing systems remotely or they can send this hardware directly to us. This cuts down lead times and helps us work within our clients’ budgets as we build towards the dream robot for their project.”

Still have questions or want to learn more? You can get in touch with Luke Corbeth here.

InDro Robotics expands with InDro Forge prototyping & custom fabrication

InDro Robotics expands with InDro Forge prototyping & custom fabrication

By Scott Simmie


InDro Robotics is pleased to announce it is now managing InDro Forge – a prototyping and custom fabrication facility utilising tools including metal 3D printing, CNC machining, silicone and urethane casting, and more.

The facility is located in Ottawa, and was formerly known as the Bayview Yards Prototyping Lab. Previously run by Invest Ottawa, the facility is a “one stop shop” for entrepreneurs and Small to Medium Enterprises (SMEs) seeking the custom design and fabrication of prototypes. The location features a variety of tools for additive and subtractive manufacturing all under one roof – along with a team with the requisite expertise. InDro Forge also plans expand into other areas, including limited production runs and other custom fabrication for specialty sectors.

The strategic partnership with Invest Ottawa brings InDro’s R&D and engineering expertise to The Forge, while Invest Ottawa will promote the facility and its capabilities to potential clients.

For both partners, this is a perfect match.

We look forward to enhancing this already-excellent facility and broadening its capabilities and services,says InDro Robotics CEO Philip Reece. This is a great fit for InDro, and were truly excited about the possibilities for existing and new clients.

There’s equal enthusiasm from Invest Ottawa:

InDro Robotics is an ideal partner for our prototyping lab, Invest Ottawa, and the many innovators and companies we serve,” said Michael Tremblay, President and CEO of Invest Ottawa. We look forward to building on our strong collaboration at Area X.O, and helping firms leverage the evolving prototyping and production capabilities available through InDro Forge to accelerate their technology commercialization and business growth. We are excited to house this expertise right here at Bayview Yards, our innovation hub.” 

Let’s dive in.

Below: This 3D printer can create products in a variety of metals, including titanium.


InDro Forge



The facility has already built a reputation for its work with rapid prototyping. Inventors, startups and SMEs have walked through the door with an idea for a prototype. They might want it for a proof of concept, a Minimum Viable Product – or simply as a working model to take and show investors.

Working with staff, they receive a full-fledged industrial design that is then fabricated in any one (or combination) of a number of materials. (The 3D printer alone can work with some 25 substances, including ABS and metal.) The Bayview Yards Prototyping lab built an excellent reputation for this kind of work. It was also an all-in-one solution for companies that didn’t have the equipment, time or expertise to carry out this highly specialised work.

Now, with InDro Robotics at the helm, we anticipate significant synergy between our Area X.O engineering team and the experts at InDro Forge. The latter will be able to draw on the expertise in aerial and ground robotics from our core R&D engineering hub. In turn, InDro Robotics will be able to add the design and fabrication capabilities of InDro Forge to its portfolio of services. What’s more, InDro has plans to extend the offerings of the lab, offering limited production runs and other custom fabrication services.

“We see the value when people come to us with a napkin sketch and leave with a physical prototype they can show investors,” says InDro Forge’s Pablo Arzate, an industrial designer with special expertise in additive manufacturing. He also sees synergy in the transition to InDro Robotics. 

“I personally am very excited – I feel like its meant to be,” he says. 

Below: Advanced capabilities include a water jet machine, capable of slicing through several inches of steel

Advanced Manufacturing



For startups and SMEs, there’s a clear advantage to outsourcing prototypes and other complex design and fabrication to InDro Forge. Few companies, particularly smaller ones, have this kind of equipment and in-house expertise. InDro Forge is equipped with a wide array of additive and subtractive manufacturing capabilities, including:

  • CNC machining
  • Silicone and urethane casting
  • Multi-element 3D printing (including metal)
  • Electronics and Printed Circuit Board fabrication and analysis

There’s much more, of course. But none of those machines or capabilities would be much use without the highly skilled InDro Forge team members. With backgrounds in industrial design and engineering (and many years of experience), they’re experts in multiple fabrication processes. The core team that worked with Invest Ottawa have stayed on and are now working with InDro Robotics. We’re pleased to welcome:

  • Joel Koscielski, Senior Manager of Design and Fabrication (and a mechanical engineer)
  • Pablo Arzate, Industrial Designer
  • Tom O’Leary, Fabricator and Machine Operator (and metal sculptor!)

For those seeking custom and complex fabrication, the InDro Forge advantage is clear.

“If you don’t have these machines at your disposal, it’s definitely great to find a place with the expertise to help you out,” says O’Leary. “If you don’t have these capabilities then we are here to help create the thing that you’re looking to create. We’re set up to help anybody who comes in with anything from an engineering project to a napkin drawing.”

InDro Forge offers services ranging from one-off prototypes to full product development.

Some of our other clients come to us where they have an early prototype that they’ve cobbled together. It tells them that their idea is possible but it’s not a product yet,” says Joel Koscielski. “So we’ll help them turn that into a more refined version of itself. We might do one of those, we might do five – even 25.”

Projects can be big – or small.

“Sometimes it’s just that extra bit of capacity – they themselves have never had to make a sheet metal box that looks good,” adds Koscielski.

Below: You dream it, they can make it. From L-R, Koscielski, Arzate and O’Leary




With all of those sophisticated fabrication capabilities in-house, you might guess that team members at InDro Forge have their own favourite machine. And you’d be right.

“My favorite machine is most definitely the Markforged II, it just stands out as a remarkable piece of engineering,” says Pablo Arzate.

“Its precision and versatility in 3D printing technology never cease to amaze me. The Markforged II’s ability to fabricate parts with carbon fiber and nylon on top of reinforcement fiber materials, including carbon fiber, glass fiber, and kevlar, opens up a world of possibilities for product development and rapid prototyping. Whether I’m creating intricate prototypes or functional components, the Markforged II consistently delivers impeccable results, making it an indispensable part of my creative and engineering endeavors.”

For Tom O’Leary, it’s the water jet – which uses a precision stream of water mixed with fine grit under immense pressure to cut and shape just about anything.

“My favourite piece in the shop is the giant basin of water,” he laughs. “It cuts with 55,000 PSI coming out of a tiny nozzle; it’s like having a saw with a calligraphy pen at the end of it. It’s absolutely capable of cutting through six inches of anything ranging from steel to glass to acryclic.”

And Joel Koscielski? He’s also particularly fond of the Markforged Mark II 3D Printer. 

“As a Fused Deposition Modelling printer using a carbon fiber reinforced nylon composite material – which has the ability to embed other continuous fiber structures into the parts – it is a true workhorse of innovation,” he says.

“On top of its use for functional parts for prototypes and products alike, its quality and surface finish allow me to make parts which can be used in sales or demonstration environments on the exterior of prototypes, not just on the inside. This is further complimented by a range of innovative solutions our team has developed such as interior metal reinforcement structures to push its parts into new and exciting areas of us.”

InDro Forge



This is a major development for InDro Robotics, and we have big plans for InDro Forge. We’re excited to expand our team with the talented crew at InDro Forge and look forward to serving clients large and small.

“This is really just such a logical fit for InDro Robotics,” says CEO Philip Reece. “Whether it’s working with new clients or assisting our own, InDro Forge has all the right stuff – including the right people.”

We’ve issued a news release on the new transition/strategic partnership. You can find that right here.

InDro Robotics flies in urban wind tunnels for National Research Council project

InDro Robotics flies in urban wind tunnels for National Research Council project

By Scott Simmie


Flying a drone in dense urban settings comes with its own set of challenges.

In addition to following regulations laid out in the Canadian Aviation Regulations (CARs) Part IX, operators have to contend with other factors. Helicopters, for example, routinely share urban airspace. And, in addition to surrounding buildings, streets are generally more densely packed with people and vehicles than other locations.

But there’s another factor that can really cause problems: Wind.

Airflow in urban centres is very different from rural settings. The close proximity of multiple buildings can amplify wind speed and create tricky – and invisible – areas of turbulence. These can cause havoc for operators, and potentially for people and property on the ground.

That’s why the National Research Council, in conjunction with Transport Canada and other partners, is conducting research on urban airflow.

Below: The view from the InDro dashboard, showing a wishbone-shaped appendage carrying two anemometers

NRC Urban Wind Tunnel Eric



The National Research Council is helping to prepare for the future of Urban Air Mobility. That’s the coming world where intra-urban drone flights are routine – and where airspace is seamlessly shared with traditional crewed aircraft. As the NRC states on this page:

“The vertical take-off and landing capability of UAS promises to transform mobility by alleviating congestion in our cities.”

As part of its seven-year Integrated Aerial Mobility program (launched in 2019), the NRC has already been working on developing related technologies, including:

  • “optical sensor-based detect-and-avoid technologies to assist path planning of autonomous vehicles
  • “drone docking technologies to support contact-based aerial robotics tasks
  • “manufacturing of high-density and safe ceramic lithium batteries to enable low-emission hybrid-electric propulsion”

The NRC is also interested in wind. Very interested.




Drone delivery – particularly for medical supplies and other critical goods – will be part of this world before long (home deliveries will likely come eventually, but not for some time). In the not-so-distant future, it’s likely that specific air corridors will be set aside for RPAS traffic. It’s also likely, eventually, that an automated system will oversee both drone and crewed aircraft flights to ensure safety.

Part of the path to that future involves looking at the unique characteristics of urban wind patterns – along with the potential challenges they pose to drone flights. Are there certain locations where increased wind speed and turbulence pose a greater risk to safe RPAS operations? What wind speeds might be deemed unsafe? Can data gathered help lead to guidelines, or even additional regulations, for operations in cities? If the speed of wind at ground level is X, might we be able to predict peak turbulence wind speeds? Might drone manufacturers have to revise their own guidelines/parameters to take these conditions into account?

Those are the questions that interest the National Research Council, in conjunction with Transport Canada and other partners. And InDro Robotics is helping to find the answers.

Below: A DJI M300 drone, modified by InDro and specially equipped with anemometers to detect windspeed while avoiding prop wash

NRC Urban Wind Tunnel Eric



Previous studies have shown that turbulence caused by buildings can indeed impact the stability of RPAS flights. Now, the NRC is keen on digging deeper and gathering more data.

The research is being carried out by NRC’s Aerospace Research Centre, in conjunction with a number of partners – including McGill University, Montreal General Hospital, CHUM Centre Hospital, InDro Robotics and others. The flights are being carried out by InDro’s Flight Operations Lead, Dr. Eric Saczuk (who is also head of RPAS Operations at the BC Institute of Technology).

Urban environments create a variety of exacerbated micro-level wind effects including shear, turbulence and eddies around buildings. These effects can locally increase reported wind speeds by up to 50 per cent,” says Dr. Saczuk.

InDro has been involved with this research for three years – with earlier flights carried out in the NRC’s wind tunnel. Now, the testing has become more real-world. InDro flies a specially equipped DJI M300. The wishbone-shaped appendage in the photo above carries two tiny anemometers placed specifically to capture windspeed and variations without being affected by the thrust generated by the rotors. The drone is also equipped with an AVSS parachute, since these flights take place over people.




Some months prior to the flights, the NRC installed fixed anemometers on the roofs of the hospitals mentioned above. This allowed researchers to obtain a baseline of typical wind speeds in these areas. Then came the flights.

Part of our mission is to fly the drone over three different rooftops and lower the drone to hover at 60m and 10m above the anemometer station,” says Dr. Saczuk.

“This allows NRC to compare the wind data recorded by the static anemometers with data captured by the mobile anemometers on the drone. Our launch sites are from the CHUM Centre Hospital and the Montreal General Hospital, which are about three kilometres apart with a pilot at each location. Additionally, we’ll be flying the drone from one hospital to the other and also along an ‘urban canyon’ between the three rooftops.”


NRC Urban Wind Tunnel Eric



Flying in urban locations always requires additional caution. The research also demands very precise altitudes while capturing data – along with piloting with the anemometers attached to the drone.

Gathering the data always has its challenges – especially when operating over a dense downtown core such as Montreal,” he says.

“Many months of planning led to two days of successful data capture on July 26 and 27. One of the main challenges is maintaining C2 connectivity amongst the tall buildings. Another consideration is ensuring a proper center of balance with the added payload well forward of the aircraft. Resultingly, flight endurance is shortened due to the extra load on the motors and thus we had to modify our flight plans to account for this. We learned a lot during the first two days of data capture!”

For Dr. Saczuk, this is a particularly rewarding research project. Why?

Quite simply because it’s cutting-edge and involves RPAS,” he says.

“We have established a great relationship with the test facility at NRC and Transport Canada, so to know that InDro is involved in helping to understand the potentially adverse effects of flying RPAS around tall buildings for the purpose of making these flights safer feels very rewarding. Personally, I also enjoy challenging missions – and this may well be the most challenging mission I’ve ever flown!”

Below: The M300, equipped with the anemometers and looking a bit like a Scarab beetle. The sharp-eyed will notice that the two anemometers are mounted vertically and horizontally

NRC Wind Tunnel Eric



InDro Robotics has a long history of involvement with research projects and other partnerships with academia. We are particularly drawn to projects that might have a positive and lasting impact on the industry-at-large, such as this one.

“Urban wind tunnels and turbulence have the potential to disrupt even a well-planned RPAS mission,” says InDro CEO Philip Reece. 

“As we move toward more routine drone flights in urban centres, it’s important to capture solid data so that evidence-based decisions can be made and Best Practices evolve. This research will prove valuable to the Canadian RPAS industry – by helping to ensure safer urban drone operations.”

The research is ongoing; we’ll provide updates when further milestones are hit.

InDro Robotics tapped to fly drone missions at Kelowna fire

InDro Robotics tapped to fly drone missions at Kelowna fire

By Scott Simmie


As forest fires continue to threaten Kelowna, BC, officials have urged tens of thousands of residents to heed warnings and evacuate from the area. Some 30,000 people are currently under an evacuation order, with another 36,000 being told to stand by and be ready to flee if necessary.

“We cannot stress strongly enough how critical it is to follow evacuation orders when they are issued,” said BC minister of Emergency Management Bowinn Ma on Saturday. “They are a matter of life and death not only for the people in those properties, but also for the first responders who will often go back to try to implore people to leave.”

Now, the City of Kelowna has called on InDro Robotics to assist with the effort by flying drone missions to gather specific data.

Recent footage shows just how close the fire is to the city:



On Friday, InDro Robotics was approached by the City of Kelowna to assist in damage assessment by flying drones in the affected areas and also to carry out thermal missions. The first flights are being deployed today (Monday, August 21, 2023).

InDro is carrying out thermal missions over the city landfill, which is burning beneath the surface. A FLIR sensor will identify hot spots for those involved with fire management.

“With a rapidly changing situation, decision-makers need the best available data,” explains InDro CEO Philip Reece. “The thermal data will be useful – as these subterranean fires, which can smoulder for days and even weeks, are not visible to the naked eye.”

In addition, InDro will be flying missions to assess damage and pull together high-resolution photogrammetry. Plans are to use the Spexigon platform for those missions.




The Spexigon platform simplifies the acquisition and processing of high-resolution earth imagery using most popular drones.

The software standardises the capture to produce imagery at scale. The process begins with Spexigon capturing and indexing raw drone imagery. That imagery can then be used by the SpexiGeo software (or other third-party platforms).  The imagery below was captured by Spexigon, but processed and viewed on the SpexiGeo app (you can scroll through the imagery and zoom in, revealing the high resolution).



Spexigon automates the flights; the pilot’s job is simply to monitor the airspace like a visual observer (though manual control can be taken over at any time). This automation results in greater accuracy when capturing data over targets of interest and produces a database that can easily and securely be accessed by decision-makers.

The Spexi app provides access to multiple features, including:

  • Planning tools for efficient and accurate data acquisition
  • Autonomous flight using the latest DJI drones
  • Secure, cloud-based footage processing and sharing
  • Survey work using Ground Control Points

“Obtaining high-resolution photogrammetry requires precise flying – including maintaining a consistent height above ground level,” says Reece. “The automated flights will ensure consistent photos – which will provide decision-makers with a clear picture of what’s been damaged, and to what extent.”




The spectacle of this raging fire has, unfortunately, drawn some unwanted attention. Officials say unauthorized drones flights have been taking place with people posting video to social media. The presence of drones not directly related to emergency operations is both illegal and dangerous. Water bombers and helicopters are in regular use and drones can pose a threat to those operations.

“Drones are a significant hazard to our air crews fighting fires,” said Bruce Ralson, BC’s Minister of Forests, on Saturday. “Now is not the time to take the footage or photos of active wildfires. Not only is it irresponsible, but it is illegal to fly them in fire areas.”

InDro is working closely with Kelowna emergency operations to ensure any drone flights do not pose a conflict with crewed aviation.

“This will be an ongoing operation and we’ll obviously be taking great care to ensure any InDro-operated flights are well clear of other aerial firefighting operations,” says Reece (pictured below).

InDro Robotics



The wildfires near Kelowna – and Yellowknife – are obviously of serious concern. InDro hopes to make a meaningful contribution to those involved in the emergency response.

“Drone-gathered data – whether thermal or visual – helps those in charge make the best possible decisions in a rapidly changing situation,” says InDro’s Reece. “We will fly missions as long as required, and offer any other assistance we can. We hope the situation for the tens of thousands of people impacted by this disaster returns to normal as soon as possible.”

We’ll provide further updates as missions progress.

Update: Following the completion of our missions, the City of Kelowna provided the following statement.

“The Regional District of the Central Okanagan Emergency Operations Center contracted InDro Robotics to capture drone footage of the Clifton-McKinley fire area.  Flights were coordinated and authorized through the Emergency Operations Center.

“The thermal imagery captured by drones improved firefighting by providing precise data on underlying fire threats. Marking specific hotspots on maps where the ground temperature exceeded safe levels allowed responders to pinpoint exactly where fires were burning underground, ensuring a more effective and targeted response. In addition, the footage allowed Emergency Operations Center staff to share imagery with directly impacted property owners, allowing them to understand the magnitude of the damage before it was safe to allow re-entry.”

Credit for feature image: Murray Foubister via Wikimedia Commons


A closer look at Unitree’s growing line of quadruped robots

A closer look at Unitree’s growing line of quadruped robots

By Scott Simmie


If you follow InDro, you’ve likely heard bits and pieces about the Unitree line of robots by now. The Chinese firm specialises in quadruped robots – the ones that always remind people of dogs.

And while some of the Unitree line can indeed pull a few tricks, they’re serious machines. That’s why InDro became a North American distributor of the products. They’ve proven popular with clients, and InDro has done some serious modifications to enhance their capabilities for broader use-cases.

So we thought we’d take a spin through the Unitree line today, with some help from Account Executive Luke Corbeth. He knows these machines inside-out, and is usually the person behind the controls when we’re off at a trade show.



Back in 2013, there was no Unitree. But there was a student named Wang Xinxing, who worked hard on building a quadruped as part of his studies at Shanghai University. His vision? To build a powerful quadruped robot powered by low-cost, external brushless motors (think of the dog’s shoulders and hips). Wang took that vision and began working – and working.

He designed and tested legs. Worked on the robot’s control system, including designing motor drive boards, the entire master-slave architecture, the power supply – and much more. At the end of that long and focused process, a working quadruped Wang called XDog (where “X” means “mystery) began walking.

First, XDog was tethered in the lab. But before long, it was out in the wild.

Wang published some of that early R&D on a YouTube channel, which he still maintains. Here’s a look back to XDog in the lab. The description says this video was pulled together in 2014-2015.



That student project – with a lot of further work – would eventually lead to the founding of Unitree in 2016. The firm became one of the first in the world to retail a quadruped. And it continues to put great emphasis on R&D. Here’s a snippet from its website:

“Unitree attaches great importance to independent research and development and technological innovation, fully self-researching key core robot components such as motors, reducers, controllers, LiDAR and high-performance perception and motion control algorithms, integrating the entire robotics industry chain, and reaching global technological leadership in the field of quadruped robots. At present, we have applied for more than 150 domestic patents and granted more than 100 patents, and we are a national high-tech certified enterprise.”

Now, Unitree sells multiple quadrupeds – with more on the way. 

Unitree Go1



This affordable robot comes with a lot of capabilites packed in.

Onboard EDGE computing is done by a Jetson Xavier NX. Five sets of fisheye binocular depth-sensing cameras allow the GO1 EDU to see its surroundings from the front, bottom, and sides. AI allows it to detect and classify humans. The robot can also walk alongside a person, rather than the “follow” mode often seen in similar machines.

The GO1 EDU is capable of navigating complex terrain, climbing stairs – even jumping over small obstacles. With a top speed of 14km/hour (3.7m/sec), the long-range GO1 can carry out even extended missions before requiring recharging.

And while the GO1 EDU is capable of carrying out inspection and surveillance work, there are other Unitree products more suited to that use-case. This machine, we’ve found, is best suited to those interested in R&D.

“The EDU version is designed to enable development,” explains Account Executive Luke Corbeth.

“So universities, corporate innovation centres, research institutes – anyone trying to find new ways for quadruped robots to understand their surroundings, plan their motion. Also ways to improve its gait, its ability to move in unpredictable terrain. Those are the sorts of things that are intriguing to this clientele.”

The GO1 has also proven to be appealing for proof-of-concept scenarios.

“Think of real-world applications like construction monitoring, inspections, security,” says Corbeth. “You can do that on a small scale on a budget, prove what you want the ideal workflow to look like, then scale up to one of the larger units.”

In addition to those capabilities, the GO1 EDU also has a playful side. There are a number of pre-programmed moves that make this robot suitable for entertainment applications. It has proven popular on stage with choreographed events and is (as we know) a hit at trade shows.



Unitree GO2



Unitree is set to release the GO2 shortly.

This machine does everything the GO1 EDU can do…and a whole lot more. If you look at the image above, you’ll notice the addition of a new sensor – right in the spot where a traditional dog’s mouth would be. That’s a LiDAR unit, and it significantly enhances the capability of the robot.

The L1 4D LiDAR sensor covers 360° x 90° in real-time. That means the GO2 can scan its surroundings in great detail, allowing for Simultaneous Localization And Mapping (SLAM) as the GO2 moves in its environment. With a mininum detection distance as low as 0.05 metres, no detail will escape the GO2. Equally impressive is the robot’s Generative Pre-trained Transformers (GPT), a neural network that helps GO2 understand and communicate with humans. (And if you’re wondering why they call that LiDAR “4D” – it’s because it can be tilted. So no, it’s not actually capturing in a fourth dimension – but it is versatile.)

The new machine, expected in Q4 2023, is also exceedingly nimble. There are some pretty serious algorithms onboard, and the quadruped is capable of descending stairs on its front two legs alone. Its 8,000mAh battery ensures it’s capable of long-range missions and a 15,000mAh ultra-long life battery is available as an option. The GO2’s voltage was bumped to 28.8V, which means this dog has more power and stability – and can trot along at an impressive 18 kilometres per hour. Software upgrades are carried out wirelessly from a cloud-based network.

“With the addition of the LiDAR unit, the GO2 will appeal to many in the R&D space – particularly those interested in SLAM and autonomous operations,” says Corbeth. “It’s also at a really impressive price point for its capabilities.”

He’s not kidding. Check this out:



Looking for a serious robot for industrial applications? Something with a lot of power, and all-but impervious to even the most extreme weather conditions? Whether it’s remotely monitoring a key outdoor asset or making the rounds of a construction site or sensitive facility, the B1 is more than capable. The 50-kilogram machine is built for business, and can support payloads of up to 100 kilograms. It could easily carry critical supplies on a Search and Rescue mission, in addition to a myriad of sensors. (It can even carry a person on its back, as you’ll soon see.)

The machine is also exceedingly rugged. The B1 has earned an impressive IP68 Ingress Protection rating, meaning it can basically walk underwater – or brave a raging dust storm – with no issues. The robot has been built to withstand punishing conditions that would actually be dangerous for people (just one of the many advantages of robots). LiDAR is available as an option with the B1, allowing for SLAM, Search and Rescue applications, and more.

“This is the model that is most comparable to the Boston Dynamics ‘Spot’ – which is what most people think of when they think quadruped,” says Corbeth. “It also has a higher step height, which makes stairs a lot easier.”

Given its power and flexibility – multiple sensors can be added to the B1 depending on the use-case – this is the machine Corbeth feels is most suited to enterprise/industrial applications.

“This is the one I feel comfortable deploying into the real world at scale over a prolonged period of time. It’s a robust, dependable data collection asset that can be configured to excel at multiple applications.”

And when we said it could go underwater – we weren’t kidding:




Even S&R applications – along with data acquisition to assist firefighters – are possible with a specially-outfitted B1:



The Unitree products are all great on their own. But InDro has developed an add-on that greatly enhances their capabilities. We call it the InDro Backpack, and it significantly improves the capabilities of the GO1 EDU, B1 – and will also be compatible with the GO2 at release.

In a nutshell, the backpack enables:

  • Remote teleoperation over 4G or 5G networks
  • Simple and intuitive interface for real-time, hands-on control of the robots
  • Monitoring of real-time individual sensor output in separate, configurable windows
  • Rapid integration of additional sensors without the hassle

We’ve written previously about the InDro Backpack, which is based on our highly popular InDro Commander.

“Out of the box, the Unitree GO1 has an app. But it’s not the greatest at managing all of the camera feeds,” says Corbeth. “Through the ROCOS dashboard, it’s a lot easier to see each of the feeds and get the most out of the impressive hardware that’s in the units. There are five sets of cameras and three sets of ultrasonic sensors – so we can really ensure the client is getting the most out of those.”

The software libraries onboard the Backpack also make any Unitree a fully ROS-enabled robot, which greatly expands their capabilities.

“That’s what makes Backpack valuable to the R&D community,” says Corbeth. “It means clients have access to all available packages to enable a wide range of applications, be it autonomous navigation, perception, motion planning, multi-robot systems – packages to ensure they can really jump-start their project. That’s the InDro value-add.”


InDro BackPack



Or how ’bout an arm? Here, Unitree has you covered.

The company has developed the Z1, a highly dexterous manipulator. Lightweight but powerful, the Z1 has the option for multiple actuators/end effectors. Whether the task is opening a door or pick-and-place using optical recognition and AI, the Z1 can get it done.

“The world is built for humans and humans have the unique ability to open doors, move levers, press switches. A platform without a manipulator is incapable of interacting with the human world the way that a robot with a manipulator can,” explains Corbeth.

The Z1 can be mounted directly onto the Unitree B1. (We’ve mounted one and have to say it’s pretty impressive.)

“The Z1 is a highly capable manipulator with six degrees of freedom,” says Corbeth. “We are even looking at integrating it with some of the AgileX products we distribute.”

Plus, when compared with other robotic arms with similar capabilities, the Z1 comes in at an attractive price point.

“It’s exceptional value for money. I believe the Z1 will really reduce the barriers to entry – allowing clients to use this hardware to create proof-of-concepts, carry out studies, and just do general research and development with the unit.”


Below: Check out the Z1 in this Unitree video



InDro is obviously pleased to be a North American distributor of Unitree products.

But we’re also pretty picky. We wanted to develop a relationship with a company that makes excellent products at a reasonable price, as well as a company that continues to push the envelope. Unitree was a perfect fit.

“If you look at their track record of new product launches and constant improvement and development, they work at a faster clip than anyone else. And that’s also a really good fit with how we do things at InDro,” says Corbeth.

“They’re constantly tweaking things so that their products are perfectly suited for the situations their clients want them to be used in. I’m personally a big fan of these robots – and our own customers have been really pleased, as well.”

You can find more details on the Unitree line – including downloadable spec sheets – right here.

And if you’d like a no-pressure conversation about how a Unitree might fit into your business or research plans, Luke Corbeth would be happy to chat and arrange a demo.



Smart Mobility companies invited to TCXpo 2023

Smart Mobility companies invited to TCXpo 2023

By Scott Simmie


We’re already excited. And we’ve blocked off September 27, 2023 in the InDro calendar.

Why’s that? It’s because that’s the day of the second TCXpo – a demo day and networking event featuring Canadian companies in the Smart Mobility space – will take place. The inaugural TCXpo, which took place at Area X.O in Ottawa, was amazing. And the second one will be even bigger and better.

The event is the only one of its kind in Canada. And it brings together cutting-edge companies with Connected and Autonomous Vehicles (ground robots, drones, cars) and related technologies. This year, more than 70 companies will demonstrate their products to the industry, investors, and government agencies in this space. 

Below: Some of the fun from the inaugural TCXpo in 2022:

Canada Robotics



The goal of TCXpo is to demonstrate Smart Mobility technology. And Area X.O is the perfect venue. The R&D complex, operated by Invest Ottawa, is a private facility. It has its own Smart City infrastructure, including a dedicated 5G network. There are roads, traffic lights, railroad crossings – most of the things you’d find in an urban environment – except this site is dedicated for robots, drones and other Connected Autonomous Vehicles (CAVs). 

Now, picture a drone dropping a payload attached to a steerable parachute that can land within metres of the desired target. Envision an autonomous car, braking when a mock pedestrian appears before its path. Or a completely amphibious robot, capable of operating in water, on ice and snow, doing its thing for spectators.

All of these happened in 2022. And there will be even more at this year’s event.

“TCXpo is a tremendous opportunity for Canadian companies to showcase their products,” says InDro Robotics CEO Philip Reece (who was the person in charge of all aerial operations at the 2022 event). “This is such a forward-looking event. Many of the products shown here will play a role in the Smart City of the future.”

The event is put on by Invest Ottawa, Transport Canada, FedDev Ontario, Innovation, Science and Economic Development Canada (ISED), as well as other event sponsors (including InDro Robotics, one of the lead private contributors). 

And for Small and Medium-sized Enterprises (SMEs), it’s a major opportunity. Here’s how Area X.O describes what to expect:

“TCXpo will create an exclusive opportunity for invited guests to experience the power and impact of cutting-edge Canadian technologies, including many preparing for global markets. Companies large and small from Canada’s capital and across the country will showcase connected and autonomous vehicles, drones, smart-city solutions, IoT (Internet of Things), robotic technology, agri-tech innovations, and more. The showcased applications will span every sector of our economy – from intelligent transportation to defence, public safety, smart farming, telecommunications, cleantech, environment, and smart cities.”

Below: InDro Robotics CEO Philip Reece speaking at the 2022 event


InDro Robotics



Interested in getting your Smart Mobility product or service in front of the people and companies that count? Looking for investment? TCXpo is the place.

And the good news? Unlike expensive trade shows, those companies accepted can set up a display for free. (And while there’s truly no such thing as a free lunch, some really great food trucks showed up last year to feed the nearly 900 people who registered.)




So glad you asked. First of all, have a good read about the event – including some metrics on attendance, media coverage and more – right here. If you think your company is a fit, head right over to the Area X.O intake form and let them know you’re interested. The deadline for applications is August 18.

It’s also worth noting that TCXpo takes place during Smart Mobility week in Ottawa. There are numerous other events, including the country’s premier Smart Mobility Conference – CAV Canada – taking place the same week.

Below: Check out highlights from TCXpo 2022



We’re obviously big fans of TCXpo – and a key corporate sponsor. But there’s another reason we’re particularly excited about the 2023 event.

“The new Drone and Advanced Robot Training and Testing facility – which we call DARTT – officially opened in June,” says InDro CEO Philip Reece. “This will enable some truly great demonstrations of ground robots navigating challenging obstacles, as well as the ability to showcase new drone technologies within a safe netted enclosure.”

InDro – and all of our many robots and drones – will be at TCXpo 2023. We hope to see you there, as well!