Aergility hits major milestone with untethered ATLIS hover test

Aergility hits major milestone with untethered ATLIS hover test

By Scott Simmie


A US-based company called Aergility just hit a major milestone worth recognising. The company’s uncrewed cargo vehicle, called ATLIS, successfully completed multiple untethered test hovers on May 10.

This is a big deal on the path toward commercialisation for Aergility, which has designed an aircraft unlike any other we’ve seen. It’s a VTOL with a small fixed wing that also employs managed autogyro technology to assist in lift.

We first saw this just over two years ago in Florida, at the AUVSI show. The company was attracting a lot of attention because of its range (800km/500 miles) and payload capabilities (300 pounds then; since upgraded to 500 pounds).

At the time, the product on the floor still required further integration and FAA permission before test flights could commence. Last fall, Aergility conducted successful tethered test flights – but this was the first time it was in a free hover, manually controlled by a pilot. In all, there were four test hovers, each lasting roughly a minute. Pitch, yaw and control functions were successfully tested. The aircraft also flew out of ground effect mode, to a height of six metres (20′).

“The solid performance of ATLIS in its initial and subsequent hover flights gives us the confidence to move to forward flight testing in early June. We are excited about demonstrating the full potential of ATLIS to our stakeholders,” said Jim Vander Mey, CEO of Aergility Corporation.

We’ll get into far more details about this aircraft in a moment. But first, here’s a look at a video Aergility just posted showcasing the event.




The beauty of ATLIS is its simplicity.

Takeoff (and hovering) is accomplished by six electrically powered rotors (the commercial version will feature eight rotors in four coaxial pairs for redundancy purposes).

Once airborne, the front tractor turboprop spins up and the aircraft begins forward flight with no awkward transition. The VTOL stage of flight lasts only about 30 seconds, so ATLIS doesn’t need to carry massive batteries.

As the forward speed increases, the power supplied to the lifting motors is reduced and eventually tapers to net zero when ATLIS reaches reaches an airspeed of 112-128 km/hr (70-80 mph). In forward flight, airspeed spins the lifting rotors.

But these rotors aren’t simply freely spinning. Remember this is “managed autogyration” – which means ATLIS is in control of the RPMs at all time – with the ability to slow some or speed up others.

“We get our forward propulsion from a turboprop, and airflow goes through the rotors to provide autogyro-type of lift,” explained Brian Vander Mey, Aergility’s head of Business Development and Partnerships.
“Our wings provide a portion of lift during cruise flight, but the rotors themselves carry about 40 per cent of the lift.”



Although there are control surfaces for testing in the current version of ATLIS (trim tabs and a rudder for slow-speed manoeuvering), the eventual version for clients will have no control surfaces. Pitch, roll and yaw functions in both hover and forward flight operate in a similar fashion to a standard quadcopter, with variations in speed between the different lifting rotors resulting in the desired manoeuvre.

“To summarize the technology, essentially the aircraft takes off and lands vertically like a normal multi-rotor aircraft,” says Brian Vander Mey.

“But in forward flight the power for our rotors slowly tapers off until it’s down to zero net power for forward flight…(that’s where) our rotors go into a state that we call managed autorotation. It is called that because of the fine control we have over the autorotation state, allowing us to stay at net zero power while still having attitude and maneuvering control – which would expend net power in a quadcopter.”

Remember, Aergility is in control of those RPMs at all times. That means if pitch, yaw or roll are required, it can accomplish this by putting the brakes on the appropriate rotors and speeding up others. In doing so, similar to a Tesla, regenerative braking is involved.

“So if we need to make some sort of a banking maneuver, we may accelerate rotors on one side and brake rotors on the other side, which both consumes and generates power, but in equal proportions. So we end up maintaining net zero power usage across the whole system.”

In other words, the energy created by putting the brakes on one rotor generates electricity that is applied to another. Because of this design, ATLIS doesn’t have to carry much battery power, which means lower battery weight and greater payload capacity.

“That means that our range is only limited by the amount of fuel that we have on board.”

Below: An image from an Aergility information deck shows how the system works

Aergility Deck



Its impressive payload capacity and range make ATLIS ideal for getting critical cargo to remote locations, or places with limited infrastructure. It requires only a 9m x 9m (roughly 30′ x 30′) space for takeoff of landing, and the company says it has a small downwash and noise signature.

This makes it ideal, says Brian Vander Mey, for multiple use-case scenarios. It is perfect, he says, for “anywhere that is difficult to access due to its remoteness, or where the cost of getting there is prohibitive, or areas with non-existent, limited, or damaged infrastructure.”

He then offers a few examples:

“This could include places like Puerto Rico, where all of the roads were destroyed by Hurricane Maria. It could be used in mining, oil & gas – really anywhere that fits that profile that it’s hard, dangerous or expensive to get there via other means.

“Canada may be one of the biggest potential opportunities. We’ve spoken with Canada Post and learned of the challenges delivering to the northern regions and First Nations communities, and with the massive wildfire problems, this aircraft can address remote support.”

CEO Jim Vander Mey adds: “We look forward to the impact this technology will have on various industries, including logistics, disaster relief, and military applications.”





The current version of ATLIS will be going through further testing, starting with forward flight in June of 2024. Meanwhile, the team is also looking ahead to a new iteration of ATLIS intended for production for clients. Lessons have been learned – as always in R&D – that can help improve the next generation. The cargo hold will be larger and modular, the rotors will be higher off the ground to allow ground crews to move safely below the aircraft, and the previously mentioned eight-rotor coaxial VTOL system will be incorporated.

“That will enable us to lose one to two rotors and still complete a mission – not simply just be able to get down to the ground under control,” says Brian Vander Mey.

And remember how ATLIS is only required to carry minimal batteries because the period of hovering is quite brief? An onboard generator that’s part of the turboprop engine recharges those batteries completely in as little as eight to 10 minutes during forward flight. And if that generator stops working? Aergility has a solution for that, as well.

“In the event the generator was to fail, we can change the angle of attack of the aircraft,” he says.

In other words, pitch down slightly to increase the airspeed spinning those VTOL rotors.

“So the entire aircraft has more aerodynamic energy coming across the rotors and we can recharge directly off of the rotors from forward flight without the the intermediate generator on the motor.”

As stated, this machine can fly 800 kilometres (500 miles) carrying 227 kg (500 pounds). That also means it could fly shorter distances with a heavier payload – or an exceptionally long range if the payload is additional fuel. Vander Mey says the commercial version of ATLIS will be able to fly some 3,400km (1900 miles) if that cargo bay is carrying additional fuel as its payload.

Below: More data from a supplied Aergility information deck:





Uncrewed cargo vehicles like ATLIS will play an important role in the coming world of Advanced Air Mobility – where airspace is shared between traditional aircraft and this new generation of vehicles. The FAA and Transport Canada have their own long-term plans on achieving this integrated airspace and both regulators are fully onboard with this vision of the future. Uncrewed vehicles will (generally) offer more sustainable flight, and be able to drop into locations unreachable except by helicopters at a reduced cost.

We’ve written about this world at length here. It’s also worth mentioning that in Canada, the lobby organization the Canadian Advanced Air Mobility Consortium is working closely with regulators and the industry to ensure a smooth transition forward.

There’s no question that under-serviced areas and remote locations – including those with zero traditional aviation infrastructure – will benefit greatly. There’s also, of course, the important use-cases of getting emergency supplies into disaster zones.

That world isn’t going to happen tomorrow. Nor is the FAA certification of ATLIS – a meticulous and time-consuming process that will truly begin when the commercial version of the aircraft is built. In the meantime, Aergility is operating with a Special Airworthiness Certificate (SAC-EC) from the FAA. It also has Certificates of Authorization (COAs) that cover an area near its local hangar, which grants permission for forward flight testing within a specific area (roughly 10 square miles, or 2,590 hectares). It also allows for flights at higher altitudes.




When it comes to commercial applications, Aergility knows that process will be lengthy. It’s following standards set up by ASTM International during all phases of design, construction and testing.

“Industry standards are being developed through organizations like ASTM,” says Brian Vander Mey. “We expect that by aligning our processes with what ASTM is developing, that will be the the cleanest path to permission to operate in the US.”

And until that coveted certification is reached? Aergility says FAA Waivers for specific operations will be obtained to enable commercial flights for operations until then.

“We don’t need Waivers for our own testing because of our special FAA permissions. But potentially we’ll have clients initially flying under Waivers.”

Aergility ATLIS



We were impressed with ATLIS from the moment we first saw the vehicle. Its cargo capacity and range filled a void, and the managed autogyration is an ingenious concept. But it’s one thing to see a static, non-functioning display on a convention floor – and quite something else to see this machine carry out multiple stable hovers.

“Aviation R&D is a very tricky business, and becomes more complex with larger aircraft intended for eventual certification,” says InDro Robotics CEO Philip Reece.

“This is an incredible milestone for ATLIS and the Aergility team. We see great potential for this aircraft in multiple use-case scenarios, and look forward to success in the upcoming forward flights.”

To learn more about Aergility and its progress, check out its website here. You can also follow Aergility on LinkedIn here.


Blue Books offer crucial guides for First Responder RPAS programs

Blue Books offer crucial guides for First Responder RPAS programs

By Scott Simmie


There are two important tools available for First Responders who use RPAS in their work.

No, they’re not drones. Instead, they are guides for developing safe and effective RPAS programs – and for carrying out low-risk BVLOS flight in the near future. These “Blue Books” are intended for fire departments, Search and Rescue organisations – and more.

These guides came about because the Canadian Association of Fire Chiefs, the Civil Air Search and Rescue Association and the Search and Rescue Volunteer Association of Canada identified a need for clear and credible reference documents. InDro Robotics received the contract to pull these books together, under the expertise of Kate Klassen and with a generous grant from the Government of Canada’s Search and Rescue New Initiatives Fund.

Kate was an early adopter in the drone world and already had a solid background in traditional aviation. She’s a flight instructor with multi-engine and Instrument Flight Rules ratings, as well as ratings for flying at night. She loves nothing more (with the exception of her two young daughters) than poring through regulations and working with bodies like Transport Canada to help safely advance the use of drones in Canadian airspace.

In other words, she was perfect for the job.

That’s Kate, in her element, below:



These days, you’d be hard-pressed to find a First Responder organization that doesn’t have some kind of drone program. RPAS have been particularly helpful in Search and Rescue operations, including night searches using thermal sensors. Many people have been rescued quickly and safely as a result. The use of drones has also helped keep First Responders out of harm’s way. For example, it’s much safer to locate a person lost on a frozen lake with a drone and then dispatch a rescue team to precise coordinates rather than having that crew roaming around on potentially hazardous conditions.

They’re also a tremendous tool for firefighting operations. Not only do they supply immediate situational awareness that can be securely shared with decision makers down the line, but thermal sensors can also detect hot spots invisible to the naked eye. Police departments and even paramedics routinely use drones in operations. (In one example from Renfrew County, a drone was put up immediately following a tornado for damage assessment and to search for any injured people.) So drones are here to stay.



It’s not an exaggeration to say that drones have truly revolutionised the work carried out by these organizations. But it’s easy to forget that this has been a recent development.

DJI released its original Phantom drone back in 2013. At the time, it didn’t come with a camera and you had to attach a GoPro. Smart tinkerers figured out how to modify those GoPros so that the pilot could stream real-time video. Another company, Draganfly, was producing basic drones even earlier and selling them to law enforcement and other First Responders.

But drones weren’t widely known, and many of the use-cases now so common had not even yet been conceived.

A few early adopters began purchasing drones for First Responder work. It was largely trial and error, as people experimented with using drones for SAR, strategic monitoring of fires, photographing accident scenes – and more. Results started to be shared by word of mouth and at conferences. Drones were gaining traction.

Yet it wasn’t so easy to just pop up a drone in those early days. Transport Canada at the time was rightly cautious about these new devices, and pretty much any flight back then required a Special Flight Operations Certificate, even if you were flying within line of sight. Unless you managed to get a blanket SFOC, it was against the regulations to simply put a drone without that long SFOC process.



As the technology improved and the utility and safety was recognised, things began to shift. More and more First Responders started adding drones to their tool kit. And Transport Canada eventually modified (and continues to modify) its regulations to safely integrate drone operations into the national air space.

If that sounds like progress, it was. But still, there was a hitch. Organizations were creating their own ad-hoc drone operations. They were doing their best, but there was really no Best Practices guide to help inform First Responders on how to create an effective program. Yes, there was piecemeal information if you wanted to endlessly surf the internet, but there wasn’t a single repository of knowledge that could be used as a guide. What qualifications are required? What type of drone is best for the job? What scheduled maintenance is necessary and why?

And that’s how the idea for the Blue Book series came about.

Below: One of the early DJI Phantoms, with an integrated camera and gimbal system.

Canada Drone Companies


The first Blue Book was released in November of 2022 and is available for members of First Responder, Search and Rescue and Fire Departments here. Kate Klassen worked extensively with the various interested parties to ensure that the book was specifically tailored to the needs of these organizations. It quickly became the reference guide for those implementing or improving their drone operations.

“I think it prevents a lot of trial and error so that folks don’t have to learn all the lessons the hard way,” explains Klassen.

“A lot of fire departments are poorly funded, and I’m sure that goes for SAR as well. So you want to be smart with the dollars that you put towards tools like this. The guide supports making sure you’re not wasting money on poor aircraft decisions or poor personnel decisions.”

That initial Blue Book is entitled “Remotely Piloted Aircraft Program Development Guide, First Edition.” It’s a comprehensive blueprint for starting an operation from scratch, or improving an existing operation. Sections in the book include:

  • Training and certification regulations and resources
  • Airspace operations
  • Aircraft budget considerations, maintenance, payload and staffing
  • First Responder deployment

There’s much more, but you get the idea. And while it’s called the Blue Book, it’s really the gold standard of guides for First Responder operations.



The newest edition was launched last week, with Kate Klassen conducting a webinar to go over the highlights. This edition is geared toward routine, low-risk Beyond Visual Line of Sight flight. Obviously, particularly in Search and Rescue operations, being able to dispatch a drone over long distances can be critical in locating missing parties. And while Transport Canada does offer some leeway for First Responders in this regard, BVLOS is going to become more routine.

Transport Canada plans to deploy new BVLOS regulations. While SFOCs were previously required, the new rules (anticipated in 2025) will permit BVLOS flights in lower risk scenarios. Specifically, within uncontrolled airspace and outside of populated areas.

But even lower risk BVLOS is higher risk than Visual Line of Sight flights. And so Blue Book II takes a deep dive into the coming regulations. These regs include a new type of RPAS certificate required for low-risk BVLOS operations called a Level One Complex Certificate. Obtaining this certificate will require obtaining additional ground school education, as well as a more complex in-person Flight Review. Operators will have to maintain specific skillsets and recency in order to take on these BVLOS flights.

Among the contents of Blue Book II:

  • Defining BVLOS
  • Policy developments, procedures and checklists
  • Detect and Avoid, Mission Planning, Human Factors

There’s also an entire section on Specific Operational Risk Assessment (SORA), including Ground Risk Class Assessment (GRC), Air Risk Class Assessment (ARC), Tactical Mitigation Performance Requirements (TMPR) and Specific Assurance and Integrity Level (SAIL).

“This manual is a guide for preparing your RPAS program in fire or search and rescue organizations for Beyond Visual Line of Sight (BVLOS) operations,” states its introduction, co-written by CAFC President Chief Ken McMullen, SARVAC President Janelle Coultes and CASARA President Dale Krisch.

“The book is designed to be relevant to both fire departments and search and rescue (SAR) organizations, all hazard, emergency operations or fire suppression. Whether your fire department or SAR organization is expanding their use of RPAS into beyond visual line of sight (BVLOS) operations or whether it is advanced in the domain, we hope will find useful information in this manual.”

“We would like to take this opportunity to thank every member of the committee that worked on this manual and its predecessor Blue Book I which addresses the development of an RPAS program. We would also like to thank Kate Klassen at InDro Robotics who managed the process and held the pen to get the committee to their overall goal. This manual is in great part due to her substantive and process expertise.”

Although the Blue Books are specifically intended for those who are members of Search and Rescue organisations and Fire Departments, some exceptions are made for those in related First Responder fields. You can request a copy of the Blue Books at the bottom of the page here.

Below: A paramedic deploys a drone

Paramedics Use Drones


Kate Klassen has been a tremendous asset to the Canadian drone space for a decade. Her regulatory expertise and willingness to assist in shaping sound practices and policies are widely known. Her online RPAS courses have trained more than 10,000 drone pilots in Canada, and her online portal FLYY continues to help new pilots obtain their Basic and Advanced RPAS Certificates (including Flight Reviews). Kate has served as the co-chair of Transport Canada’s Drone Advisory Committee (CanaDAC), is on the board of the Aerial Evolution Association of Canada, and has previously served on the board of COPA – the Canadian Owners and Pilots Association.

“These guides were pretty labour-intensive, but I’m pleased to have worked closely with these various associations and individuals to pull together what we believe to be a Best Practices manual that truly reflects the needs of these specific organizations and use-cases,” says Klassen.

“We are also always willing to work with any company that has a drone program to produce a guide tailored specifically for their operations, ensuring consistency and safety across all operations. We are also building out specific Micro-Credential courses in areas like thermal/hyperspectral imaging, surveying, precision agriculture and more. These are highly-focused, hands-on courses that quickly bring operators up to speed on new and complex skill sets.”

In addition, InDro Robotics manages the Drone and Advanced Robot Training and Testing (DARTT) facility at Area X.O in Ottawa, which includes both classroom space and a netted drone enclosure.

If you’re interested in discussing your RPAS program needs, whether for training or a company/industry-specific manual, you can get in touch with Kate right here.

Cypher Robotics Captis System Generates Buzz at #MODEX2024

Cypher Robotics Captis System Generates Buzz at #MODEX2024

By Scott Simmie


MODEX2024 is a wrap.

And, for Cypher Robotics and its newly released Captis system for cycle counting and precision industrial scanning, the conference was an unmitigated success.

MODEX is one of the world’s preeminent supply chain automation shows. It’s held on alternating years with ProMat – much like the Farnborough International Air Show and the Paris–Le Bourget Air Show. The two supply chain shows attract something like 50,000 global buyers, so they’re really big.

It was at MODEX in Atlanta that Cypher Robotics, a company incubated by InDro Robotics, revealed its new solution. Captis integrates an autonomous mobile robot (AMR) with tethered drone technology for inventory cycle counting. The Captis base can autonomously navigate even narrow warehouse aisles without any infrastructure changes. As it moves down the aisle, a drone ascends from its nest atop the AMR, with a tether attached to the Captis base. That drone can scan any type of code on the box of the products (it’s code-agnostic).

And that tether? It’s a pipeline for both secure data and power. Data captured by the drone reaches the base in realtime, and is instantly uploaded and integrated with the facility’s existing Warehouse Management System (WMS), WCS (Warehouse Control System) and WES (Warehouse Execution System) software. Ample power storage in Captis means autonomous missions can last up to five hours before the system returns to base for a wireless recharge.

What’s more, the Captis system is also capable of RFID scanning and even precise industrial scanning for 2D and 3D digital twins. (These are major additional features, which we’ll be exploring in detail in forthcoming posts.)

We wrote about Cypher Robotics and its product launch here. But we’ve since had a chance to speak with the InDro team that assisted with that launch. InDro Vice President Peter King and Head of Strategic Initiatives Stacey Connors were in Atlanta, working with partners (and AI-fulfilment experts) GreyOrange and global telecommunications innovator Ericsson, which can easily set up private 5G networks in warehouses for ultra-secure data protection and throughput.

The verdict? Captis was a hit.

Below: Stacey Connors with Captis and GreyOrange at MODEX 2024. There’s a reason she looks so happy…


Stacey Connors Captis MODEX



The Supply Chain sector is going through something of an automation revolution. At every step of the way, robotics and software are being used to make these processes more efficient – and reduce the burden on human beings normally assigned to the tedious tasks of physically moving products or scanning by hand during cycle counting. There’s been a growing and global shift toward using robotics wherever possible.

“MODEX is getting more and more technical,” says InDro Vice President Peter King. “More and more robotic solutions are taking over that show. Alternatives to the traditional methods of supply chain operations are growing fast. Increasingly, companies are interested in automated ways of loading and unloading trucks, picking and placing objects, bringing inventory into the warehouse – and cycle counting.”

On that last issue, cycle counting and inventory management, King says many at MODEX2024 “identified this as a monster of an issue.”

One of the companies King spoke with at the show uses 26 full-time employees to do manual scanning in its six 750,000 square foot warehouses. It’s boring work, and expensive.

Obviously, there’s got to be a better and more efficient way. Deplying the Captis system would allow those 26 people to be reassigned more satisfying work.




There are already some solutions that implement drones for cycle counting. In fact, King says many of those interested in Captis had explored the possibility of drone-only solutions. But, he says, the short flight times between recharging and other issues have led many to seek a more comprehensive option with longer mission times.

That’s a key ingredient in the Captis secret sauce. By fully integrating a tether-based drone with the Captis AMR nest, Cypher Robotics has created a “drobot” (apologies to Skyland players) capable of scanning inventory in a medium-sized warehouse in a single go.

And that capability…has created a lot of interest.

“Captis really blew it out of the water,” says King. “We were the Belle of the Ball.”

There were two Captis systems on display at the show. One was with the GreyOrange exhibit and the second was at Ericsson’s booth. Head of Strategic Initiatives Connor was hearing the same stories – and seeing the same enthusiasm over Captis – as King.

Most organizations invested in consideration of drone technology for cycle counting within the past two years,” she says, “but concluded the payback and accuracy was not justifiable given the short run time of 10-15 mins per drone.

“So when they recognized this problem has been solved by Cypher’s tethered AMR, the excitement was obvious. Jaws dropped at the five-hour run time – and that no additional infrastructure was needed.”

Below: A lineup of potential clients waiting to discuss Captis at MODEX2024. You can just make out the back of Peter King’s head to the right of the robot. 

Captis MODEX2024



Cypher Robotics is an Ottawa-based company devoted to using robotics to gain efficiencies in the Supply Chain sector.

According to its website, “Cypher Robotics is modernizing warehouse operations with autonomous technologies that are replacing mundane and labour-intensive job functions. We are committed to delivering robotics solutions that are simple to integrate into an existing warehouse ecosystem, immediately providing an ROI for the operation.”

InDro Robotics could see the growing demand for this kind of solution, and invested in Captis. The two companies also signed an incubation agreement, whereby InDro was able to assist with engineering expertise for the development of the Captis system.

“With Captis, our fully autonomous cycle counting solution, manual cycle counts become a thing of the past. By enhancing operational margins and improving inventory accuracy, Captis significantly boosts efficiency,” continues the Cypher Robotics site.

“Cypher Precision Scan enables us to assist customers in eliminating the labour-intensive task of updating CAD files for scenario planning. Precision Scan offers a fully autonomous solution, efficiently capturing highly accurate digital twins of facilities, empowering better business decisions.”




The global automation for supply chain automation is huge. One company, Precedence Research, estimates this sector was worth $58B US globally in 2022, and predicts it will rise to an astonishing $196.01B by 2032. Companies are looking at using automation wherever it can be implemented for speed, efficiency and accuracy.

Why the sudden push? Well, the global COVID19 pandemic was part of it. Remember all the issues with the Supply Chain during the first year in particular? Well, it was triggered because many people carrying out the manual work in the supply chain weren’t on the job, or were at significantly lower numbers. This coincided with the rise in automated solutions. Soon, technology companies were offering faster and better ways of cycle counting and physically moving product using robotic solutions.

Identifying that demand was the genesis of Cypher Robotics.

In addition to cycle counting, Captis has a separate “crown” or dome that can be placed on the AMR when the tethered drone is not in use. That dome contains RFID sensors, meaning Captis can automously navigate a showroom, for example, and capture all inventory on a regular basis. It’s also capable of precision-level scanning of facilities, uploading updated data for digital twins. For potential clients, these multiple capabilities ticked a lot of boxes.

“I know Peter used this phrase, but we truly did feel like the Belle of the Ball,” says Connors. “The high volume of activity and interest around Captis continued to flow all week.”

King, who is also a veteran of many conferences over the years, described this as his “best” conference ever.

Anytime I told people that we didn’t want to disrupt their workflow, they lost their minds,” he says. “There was honestly nobody else at the show that had this kind of solution, and there’s incredible pent-up demand for precisely what Captis offers.”

Cypher Robotics Captis



InDro Robotics has watched Cypher Robotics and its Captis system take shape over the past two years. It’s been a very methodical process, with an eye on a comprensive and integrated solution for industry-at-large.

The result, Captis, is the first made-in-North America solution we are aware of that combines tethered drone technology (to reach those *really* high bins) with an Autonomous Mobile Robot. The company has a major Canadian retailer (with more than 300 locations across Canada) as a partner, and carried out R&D and testing for many months in its warehouses to perfect the solution.

“We’re pleased with the tremendous interest Captis generated at MODEX2024,” says InDro Robotics CEO and Cypher Robotics early investor Philip Reece.

“It took a lot of engineering to create this solution, and I’m proud of the assistance InDro was able to provide Cypher Robotics. Captis is a unique solution – and, based on the interest at MODEX2024, is going to be a huge success.”

You can learn more about Cypher Robotics, including contact info, here.

Real Life Robotics expands with new team, research grant, partners

Real Life Robotics expands with new team, research grant, partners

By Scott Simmie


It’s been some time since we’ve had an update on Real Life Robotics, an Ontario-based firm gaining traction with its BUBS last-mile delivery platform.

A lot has happened over the past year, with all of it appearing to point toward a solid trajectory.

“We started off 2024 with a bang – with a really exciting story that has to potential to significantly change the current trajectory of Canadian small and medium businesses from coast to coast,” says CEO and Founder Cameron Waite.

The story? Real Life Robotics (RLR) was one of eight Canadian startups selected by the Canadian Food Innovation Network to receive funding through its FoodTech Next program. FoodTech Next offers funding for early-stage Canadian technology firms who seek to be part of – or sell to – the wider food industry. Through this program, RLR will receive nearly $250,000 to test its solution in real-world environments and validate the return on investment for the food sector. 

In the current economic landscape, Canadian businesses grapple with increased customer demands for last-mile delivery and reduced profitability. Currently, most rely on third-party companies like Skip The Dishes, DoorDash and Uber Eats, which charge 20-35 per cent commissions on each order.

Automation is poised to play a critical role in helping businesses efficiently and sustainably move products from Point A to B (and even C, D, E…).

“The overarching goal of FoodTech Next is to accelerate the commercialization of Canadian innovation by generating first demonstration opportunities,” says its website.

The announcement made the news, including this CBC interview with Waite.

Below: Founder/CEO Cameron Waite making a pitch for the FoodTech Next program…


Cameron Waite RLR


When the RLR team carries out demonstrations across the country, it brings along BUBS – one of several solutions Real Life Robotics has available to customise and deploy. Out of the box, BUBS has a large cargo bay (50 kg) suitable for transporting everything from bottled water to medical supplies to prepared meals.

BUBS can be remotely tele-operated over 5G networks with near-zero latency, or carry out deliveries autonomously. It can work indoors or out and has an IP protection that makes it impervious to inclement weather (with the exception of, say, a hurricane or tornado). It has excellent obstacle avoidance and a number of other features intended for safe operation near people. It’s also perceived as “friendly” – which is important as these devices are introduced in public spaces.

BUBS can also be customised, pending client needs.

“We’re a cargo and last-mile delivery robotics platform,” says Waite. “But clients inevitably and always have some sort of unique requirement to their business in order to fully adopt and scale automation. There’s no reason BUBS can’t be bigger or smaller, or a different shape or colour – or have its cargo bay modified to carry something unique or unusual that requires modification.”

And the business model? Well, it’s not just about selling a single robot. It’s about that first robot proving its worth to the client in economic terms.

“It’s nice to say: ‘I have a robot,'” says Waite. “But our goal is really to have a robot or automation solution that has a positive business impact so that you want to scale and buy more of them. Otherwise, you buy just one.”




It’s not just BUBS. Real Life Robotics, says Waite, has another solution it’s about to unveil: A quadruped delivery robot. Having four legs instead of wheels means deliveries are not limited by stairs or rough terrain. And, in a world where businesses increasingly want their space or inventory scanned, this robot is capable of carrying out those tasks as it goes about its delivery work.

While food delivery in public spaces is clearly the focus of Real Life Robotics (and is tied to the federal grant), Waite emphasises that BUBS can be put to use in far wider use-cases.

“Right now our focus is the local delivery side of the food industry,” says Waite. “But beyond that, it could also be products – like hats at a hockey game or bottled water at a. convention centre. It all really comes down to increasing the margins for our clients while ensuring a high-quality memorable delivery experience for the customer.”

Below: BUBS, making things easier…


Real Life Robotics



Though we’ve been focusing on the robots, you can’t build a business without a team. And there, Waite says Real Life Robotics has been fortunate in attracting some A-level talent who share his vision.

The company has acquired Brandon J. DeHart as Chief Technical Officer. DeHart is the head of the University of Waterloo’s RoboHub, the epicentre of all things robotic at the university. (Waterloo’s Engineering department, according to the RoboHub website, “has the largest and most active robotics and automation research group in Canada, supporting Canada’s largest robotics and automation cluster.”)

So DeHart comes with impeccable credentials, and has the expertise to both modify products and engineer completely new solutions for RLR. He has both a PhD and a Masters degree.

“In terms of a robotics pedigree, this guy is top of the tops,” says Waite. “So we’re really, really excited about having him on board as CTO and I’m really excited to see what we can build together.”

You can read more about DeHart in this RLR blog post. And you can look at him, in the photo below…

Brandon J DeHart RLR

NEW CFO, Head of Growth


Real Life Robotics has also attracted a new Chief Financial Officer, as well as a Head of Growth.

The CFO is Ian Watson. Based in the UK, Watson spent 25 years with Price Waterhouse Cooper before venturing into the startup space. He has owned and managed several startups, and is a Canadian Chartered Accountant. Watson holds a Master’s degree in Business (McMaster University) and a BA in Economics (Wilfrid Laurier University).

“He’s deeply experienced in the financial and accounting worlds, plus he knows startups and how to help businesses grow strategically,” says Waite.

Sharif Virani is the new Head of Growth – and appears to be a great fit. Before joining RLR, Virani held a similar position with Tiny Mile, which deploys small pink robots for food delivery. The company is currently operating in Miami – and had previously been running its operation in Toronto. If you ever saw one of those little robots on the news or social media, odds are Virani was behind that.

“He’s a serial entrepreneur in the restaurant industry space – so he understands that market really well,” says Waite.

And those are just three of the recent additions to the RLR team. A total of 10 people are now part of the company, with several on the sales and operations side. Together, they bring a total of 53 years of direct experience in the robotics industry.




As Real Life Robotics prepares for its next phase of growth, the company is currently in a Series A raise round.

“The traction we’ve received – from the partnerships we’ve been developing, the grants we’ve been winning, and the client revenue we’re now generating – tells a really strong story to the investment community,” says Waite.

Below: a 360° video tour of the University of Waterloo’s RoboHub. Be sure to scroll around to see the big picture…



Cameron Waite talks a good game. But how do we safely introduce robots onto public roadways? Though Toronto now has a pilot project underway to evaluate such delivery robots, it’s not like they’re going to be embraced tomorrow.

So how can Waite be so optimistic, when public acceptance (and even permission from municipalities) is not guaranteed?

The answer, he says, has been in ground work and relationship building. RLR is also part of multiple stakeholder organisations that have been actively engaging on precisely this issue. The company is part of the following groups:

That last one? Its members are Gatik, Tesla, Uber and Real Life Robotics.

Lobbying groups are one thing. But getting the automated rubber to meet the road is another. Here, Waite reveals that RLR is ahead of the game: It has permission from five municipalities across the country to operate and test its vehicles in public spaces.

“That’s really what this government grant is targeted toward: Exploring the validity of robots in public environments,” says Waite.




Waite also says RLR has some significant partners onboard, including “an incredibly large restaurant space company.”

“This partner not only gives us some amazing insight and data that we can utilise to ensure that this technology truly has ROI and business value to that industry. They also give us some scale and scope as we grow.”

But why not name names?

“The reason is simply that we’re moving a little bit faster than their marketing team can handle.”

Waite promises some significant announcements on this front soon, and deployment of RLR robots in the streets in the near future. Again, Waite won’t reveal details but pledges that the use-case is “really cool” and will grab headlines.

“By the summer, for sure, Real Life Robotics robots will be in the field – and there will be a huge story around it.”

He adds that RLR has Indro Robotics as an engineering partner, and access to InDro Forge, a rapid fabrication and prototyping facility based in Ottawa. These two partnerships, he says, speed custom fabrication for clients, in addition to builds of entirely new robots.

Below: BUBS on the street…doing good work



We’ve been watching Real Life Robotics with interest over the past year and we’re pleased to see the terrific progress that’s been made.

“Robotics and automation can make things much easier for many businesses, but municipal permissions for more than a one-off demo have traditionally been tricky in this space,” says InDro Robotics CEO Philip Reece.

“That’s starting to shift, but you can’t have public adoption and acceptance until these devices are actually in the field. And they can’t be put in the field without the vision and cooperation of municipalities. We’re pleased to see that Real Life Robotics has made gains in this area, and congratulate them on winning that important grant. We look forward to seeing RLR robots in the streets – somewhere – this summer.”

For more information on RLR, including an investor deck, contact Cameron Waite here.

InDro’s Kate Klassen gives briefing to lawyers on drones and AAM

InDro’s Kate Klassen gives briefing to lawyers on drones and AAM

By Scott Simmie


Want a quick overview on drones? One with a specific emphasis on the state of Canadian regulations and where things are headed – including Advanced Aerial Mobility?

Well, the bad news is that you missed an excellent presentation by InDro’s Kate Klassen February 7th. Klassen was invited by the Canadian Bar Association, BC Branch (CBABC), to present on precisely that topic. The event was a meeting for the CBABC Air Law Section and was titled: Drones, Robotics and Advanced Air Mobility Confirmation. CBABC Members gathered in Vancouver, and broadcast the meeting live to an online audience.

The good news? We watched it. And, because Klassen works for InDro Robotics, she kindly passed along the deck used in the presentation. By simply reading this story, you’ll get the high-level low-down on the following topics:



That’s a lot of information to go through, but Klassen is a pro. Plus, we’re not going to dive into absolutely everything she talked about – just the highlights for a busy person like you.

Kate Klassen was one of those people who could see the potential of drones quite early. That’s not surprising, given that she was already a professional in traditional aviation. She’s a Flight Instructor and commercial pilot with ratings for multi-engine aircraft, as well as flying by instruments only (IFR) and at night.

That’s a lot of experience, and her expertise is widely recognised in the aviation and drone worlds. In fact, Klassen has has been consistently active in the sector-at-large: She’s been on the Board of Directors of the Aerial Evolution Society of Canada (formerly Unmanned Systems Canada) since 2018. She’s also served as co-chair of Transport Canada’s Drone Advisory Committee, also known as CanaDAC, as well as with COPA (Canadian Owners and Pilots Association).

“I got into drones about 10 years ago, and it was a pretty traditional route into drones,” she said. “At the time, you were either a really excited hobbyist, you came from (a sector) like defense, or you were working in traditional aviation and then made the jump over to the ‘unmanned’ – that’s what we called it at the time – side. 

“I like to joke that everything that I’ve flown has been unmanned,” she quipped.

She also promised “There are some really exciting things on the horizon for the drone industry.”

And when it comes to that…she’s definitely not joking.

Below: Kate, just after completing her seminar




Klassen quickly jumped into the current regulatory space, outlining the existing rules in Canada. She explained that regulations covering Remotely Piloted Aircraft Systems (RPAS, or drones) are covered in legislation under Part IX of the Canadian Aviation Regulations.

“It’s really regulating three things: The pilot, the product and the procedures,” she explained, adding “Drones are regulated based on risk…it’s the weight of the drone and where you intend to operate it.”

There are currently three classes of drones: Those weighing 249 grams and less (micro-drones), those from 250 grams to 25 kilograms (small drones), and 25.1 kg to 150kg (medium).

Under current regulations, a Transport Canada-issued RPAS Certificate (an operator’s license for drones) is not required if you’re flying a micro-drone. They can be flown over people and even in dense urban settings (pending local bylaws) – providing you use common sense.

“So really there’s only a few rules for micro-drones. There’s the Part VI regulations that apply to all aircraft that say ‘don’t fly in restricted areas like over forest fires’. And then in Part IX there’s only one regulation, and it’s the ‘don’t be an idiot rule’. Don’t be wreckless or cause a hazard to other airspace users or people below you. And those are really the only rules that apply.”

Operating anything 250 grams or heavier requires either a Basic or Advanced Certificate from Transport Canada. A Basic certificate allows you to fly in uncontrolled (Class G) airspace up to 400′ above ground level (with some restrictions that keep you a safe distance from people on the ground). An Advanced Certificate permits flights to the same altitude in controlled airspace – where aircraft are subject to NAV Canada’s Air Traffic Control system – albeit with fewer restrictions. For example, you can fly closer to people.

Under current regulations (subject to change in the not-so-distant future), special permission from Transport Canada is required if you want to fly your drone Beyond Visual Line of Sight (BVLOS, or farther than you can see it with the naked eye), or if you are flying a drone weighing more than 25 kilograms. If you’re flying anything heavier than a micro-drone in controlled airspace, you also need to notify and receive the green light from NAV Canada, which is a snap with the NAVDrone app.

There’s more, of course. If you’re interested in learning the rules in greater depth, we recommend you take a read of RPAS 101, created by the Aerial Evolution Association of Canada in conjunction with Transport Canada. Klassen was one of the key contributors to the document, which you can find (in both official languages) here.

Below: Kate Klassen, in her element.




Remember those micro-drones? They’ve become not only exceedingly popular, but also increasingly powerful. With extended flight times, high resolution cameras – and the ability to fly pretty much anywhere, including dense urban environments without additional permissions – Klassen says they’ve rapidly become an unexpectedly important part of the drone sector.

She specifically pointed to how a company called Spexi Geospatial is leveraging this technology – along with the ability for pilots to fly without a Transport Canada RPAS Certificate – with a specialized software platform. The Spexi software allows pilots to fly pre-programmed flights that capture imagery at scale. The software carries out the flight, including capturing photos at precise intervals so they can be stitched together into a hexagonal ‘Spexigon’. This ability to capture imagery at scale has already been used to create orthomosaics of entire cities in just days. Depending on the mission, pilots who complete certain missions can be paid cash or points (which act as credits for their own Spexi missions) – with potential plans for crypto tokens down the road. In fact, Spexi just announced plans for what it believes is the largest ever drone imagery capture attempted (details here).

“They’re kind of maximising this regulatory structure, the ability to operate micro-drones in environments that would be a lot more challenging if the aircraft were heavier,” explained Klassen.  “Someone can take an $800 drone and turn it into a business.”




With the growth of powerful software, including AI and Machine Vision libraries (where objects can be detected, identified and classified), Klassen said drones have been finding new use-cases. For example, a drone can be sent on a mission where it’s looking for change detection in infrastructure. Do these power line insulators look the same as they did on the last flight? Is there corrosion or cracks in critical infrastructure like bridges? Are any of those bolts sheared or damaged? Is that component too hot?

Drones with the right software and sensors can now detect such anomalies automatically. They can even forecast routes that a missing person is most likely to have taken during Search and Rescue missions based on last known location, heat signatures, path detection, etc. There’s also the business of building inspection, where a drone can automatically detect everything from poor insulation to missing shingles or other damage. There are even specialized drones equipped with sensors for Non-Destructive Testing, where a probe is physically applied to a surface during flight to detect for rust, paint thickness, weld integrity – and more.

So as AI has increasingly been applied to drones, their capabilities and utility have greatly expanded. They’ve also made the job simpler.

“So erecting scaffolding and shutting down sidewalks and preventing work from happening while the inspection’s taking place – you can cut down on a bunch of expenses that way as well,” she says.




This is where ground robots and aerial robots work in concert. And it’s one of the coming trends identified by Klassen.

“This is where you see ground robots and aerial robots working together to achieve different tasks. You can even have a drone…moving through a warehouse scanning tags and giving you live inventory management of that warehouse, which is a job that it turns out humans really hate to do,” she said.

“So it’s a great way to increase the retention of employees they want to keep, and give those dull, dirty, dangerous jobs to a robot.”

Below: Ground robots, like the InDro Robotics Sentinel, can work in conjunction with drones as a force multiplier



The ability to routinely fly Beyond Visual Line of Sight without the need for a Special Flight Operations Certificate from Transport Canada is something the industry has been focussed on for years. Such flights (and there are many carried out with SFOCs currently), permit drones to take on long-range tasks like delivery, inspection of railroads and pipelines – and much more. There’s great demand for such services, but the SFOC process slows things down.

Transport Canada understands this. But, as the federal regulator, it’s rightfully concerned about avoiding conflict with traditional aircraft, as well as people and property on the ground. But newer technology, including specialized Detect-and-Avoid sensors and software (along with parachutes), is paving the way for such flights to become routine.

In fact, Transport Canada is looking at revising Part IX of CARs in 2025 to permit many BVLOS flights without the need for an SFOC. There will also be provisions for drones up to 150 kilograms, meaning significant cargo could be delivered.

“I think it will be a while before you get your pizza delivered or Amazon deliveries via drone,” she says. “But routine BVLOS will be included in a regulatory package that we’re anticipating in 2025.”




Another big piece of the future of aviation – globally – is the coming world of Advanced Air Mobility, or AAM. This is where transformative and largely carbon-neutral aircraft will be capable of shuttling people or cargo between locations that have until now been poorly served (or not served at all) by traditional aviation. For example, there are remote communities that do not currently have airports because the economic model just isn’t there. AAM could change that; the goal is for such services to be accessible and affordable – and the vast majority of these aircraft won’t require runways or the other infrastructure (fuel depots, control towers) typical of small airports.

Perhaps the most well-known coming application is that of an air taxi – a Vertical Takeoff and Landing (VTOL) aircraft that can transport people (or equivalent cargo). Such aircraft (many are currently in development and testing) would transit between Vertiports, small pads that will start appearing in major cities and nearby regions in the years to come. Though the regulations have not yet been ironed out, it’s anticipated (and the US Federal Aviation Administration is planning for) such vehicles to fly within specific corridors that keep them safely separated from the routes of traditional aircraft (including helicopters). Initial flights will be carried out by a human pilot actively piloting onboard (Human In the Loop), followed by a human pilot monitoring the flight onboard (Human On the Loop). Eventually, it’s anticipated that these aircraft will be fully autonomous (Human Out of the Loop), with a person simply monitoring the flight – still with the ability to intervene should a problem arise – from the ground.

In fact, we wrote recently that BC’s Helijet has placed the first orders for some of these aircraft – a signal that we are definitely on the cusp of this future. So remember that AAM acronym; it’s coming.

“This is a huge term…and it’s going to be very much the future of aviation,” said Klassen.

Below: The ALIA 250 eVTOL (electric Vertical Takeoff and Landing) aircraft, manufactured by US-based BETA Technologies, has been ordered by Helijet International. The vehicle transitions to forward, fixed-wing flight for greater efficiency once a sufficient altitude has been reached




We should mention that AAM is not solely about these larger aircraft; drones will be part of the AAM world, with a high degree of automation coordinating flights between these various automated aircraft.

In the meantime, the drone sector continues to grow, with many successful businesses across the country – ranging from large service providers like InDro Robotics right through to smaller one- and two-person operations. There are plenty of opportunities, with proper training and even a small investment, to start a company.

And that’s where FLYY comes in. Though Klassen only mentioned it in passing, she runs a successful online training operation that takes potential pilots with zero or minimal background with drones or aviation through all of the knowledge requirements to obtain their Basic or Advanced RPAS Certificate (including arranging the Flight Review required by Transport Canada to obtain that Advanced certification). We’ve previously written about this program here.

Klassen is the instructor of the course, which is arranged in logical, bite-sized steps (interspersed with her trademark humour) to keep aspiring pilots engaged. Klassen is passionate about sharing her expertise, and it shows in these courses. If you’d like to take the next step, you can check out her many course offerings here.

There are plenty of online offerings out there. But there’s only one we’re aware of where the person behind it has trained more than 10,000 drone pilots in Canada. Though Klassen doesn’t like to promote herself, we can state with authority that she is immensely respected in the field – both by professional drone operators and by the many people who’s worked with at Transport Canada.

“Our zero to hero package is $599 and includes both ground school, prep for your Flight Review, and the Flight Review itself. A DJI Mini 3 Fly More combo is like $850,” she said.

In other words, it won’t break the bank to gain the right knowledge and get flying. Plus, Klassen is currently working on Micro-Credential courses for students to pick up skills using specialised sensors and data analysis – the kind of skills that can land a job, but are difficult to obtain without one.

Below: Kate Klassen in a screengrab from her FLYY course

Kate Klassen Drone Training



Kate Klassen is the Training and Regulatory Specialist at InDro Robotics. So you’d expect we’d have good things to say about her. The reality is, we’d have good things to say about her regardless of where she worked. She is a the very definition of a subject matter expert, and she loves nothing more than sharing her knowledge and helping to shape the future of aviation in Canada. (Well, that’s not quite true: She has two young children and a husband who collectively make aviation and drones her second love.)

“As expected, Kate covered a lot of ground in her presentation – and did a fantastic job of providing a clear look at the state of the industry, along with where it’s headed,” says InDro Robotics CEO Philip Reece.

“Klassen is a true professional in every sense of the word. We feel fortunate that she’s on Team InDro, where her vast regulatory knowledge of both traditional aviation and drones is immensely helpful both to our team – and the drone sector at large.”

If you’d like to download Kate’s presentation, you can do so here. And if you’re an educational institute, or a business considering training with multiple students, Klassen is always happy to discuss a break on price. You can contact her directly here.

InDro Forge prepped for next-phase expansion

InDro Forge prepped for next-phase expansion

By Scott Simmie


Have an idea for a prototype? InDro Forge has got you covered.

The company can take a napkin sketch, turn it into a full-fledged design – and then produce a single prototype or limited manufacturing run.

But the Ottawa-based facility, equipped with multiple machines for additive and subtractive manufacturing and an A-level team of engineers and support staff, is now capable of much, much more.

If you happened to miss this story, here’s the headline: Back in September, InDro Robotics took over operations of what was known as the Bayview Yards Prototyping Lab. Previously run by Invest Ottawa, InDro could see the synergy of running this in conjunction with its R&D headquarters (based at Ottawa’s Area X.O).

But the acquisition has involved much more than a name change. Under the guidance of Stacey Connors (Head of Strategic Innovations) and Joel Koscielski (Senior Manager, Design and Fabrication), a longer-term plan for growth quickly began to form. Soon, there were new hires in engineering and sales. There was a comprehensive review of the existing market to identify gaps.

And, ultimately, a new roadmap for the future. Though prototypes will still be an important part of the core business operation, InDro Forge now has the expertise and capacity to be of service to companies with products anywhere along the Technology Level Readiness (TLR) scale.

“I was initially excited about the synergies with robotics,” says Luke Corbeth, Head of R&D Sales with InDro Robotics.

“But after seeing the all-star cast, I’m also excited for its potential as a standalone alongside InDro Robotics. There are so many other industries we can touch. I feel so confident, talking to anyone and knowing that wherever they are in their journey we’re going to be able to help. I know we can take it on – and that’s super exciting.”

It is. Now, let’s find out why – and how.

Below: The water jet table at InDro Forge. Using a fine slurry under immensely high pressure, it can slice through steel up to 2″ thick

Advanced Manufacturing



It was clear at the outset that InDro Forge would be able to tap into the expertise of InDro engineers who work at the Area X.O site. But it was equally clear that InDro Forge would also benefit from additional full-time engineers at its own location.

We were fortunate in finding Matthieu Tanguay, a Mechatronics Engineer with a deep background in robotics, along with experience in forestry and oceanography. Tanguay also worked for four years with another Canadian robotics leader, Clearpath. He helped design, validate and deliver multiple different robots to clients during that period (including a robot custom-built for Antarctica).

“I’ve always described myself as a ‘Jack of all trades'” he says. “I’ve always been a curious person with a wide variety of interests. At InDro Forge I think I will be able to tap in these skillsets acquired through the years to help InDro Forge push through to another level.”

Stephan Tzolov was eager to make the jump from Area X.O to join the growing team at InDro Forge. Tzolov has a degree in Industrial Design – and design is integral to the InDro Forge process. Tzolov also loves learning new skills, and saw a perfect fit with InDro Forge.

“I made the jump to InDro Forge when I wrapped up a large, long-term project,” says Tzolov. “Timing worked out perfectly in that we had just announced the new expansion into Forge and the cool new opportunities for a dedicated mechanical engineering/design team. With the new skills and technical know-how I’d acquired via that large project, I decided to push my abilities even further by helping build up the team.”

Tzolov already had experience with a range of production tools. For the past few months, he has immersed himself in learning new ones.

“There were already quite a few machines and tools I’d familiarized myself with via my university education. However, in recent months it’s been quite the deep dive on these machines and processes – including operating the waterjet cutter and CNC.”

Below: Stephan at the controls of the waterjet cutter




Prior to becoming InDro Forge, the lab specialised in designing and producing prototypes. And while that will still be part of its business model, the company is positioning itself to take on clients with products that are anywhere along the TRL scale. Perhaps you’ve already got a prototype – but it doesn’t have quite the look and feel desired. Maybe you have a functioning product that has some bugs. Or perhaps you’re looking for a polished, finished product that can be shown to your own clients or displayed at a conference. InDro Forge does it all.

“Our initial conversations with industry partners have helped us identify, these are the things that matter,” explains Connors. “We can help customers wherever they are on the TRL.” Offerings include:

  • Design
  • Production
  • Builds
  • Prototypes
  • Testing/validation
  • Engineering

Whether it’s a new client, a new concept – or a completely new application – InDro Forge can shape the path to a finished product. And while there are other companies out there (and some doing very good work), we believe that the synergy of InDro Forge’s leadership and staff – combined with the R&D expertise of InDro Robotics and our state-of-the-art production tools – sets us apart.

“We are leading with technical expertise – that’s our strongest differentiator,” says Stacey Connors. “We work closely with clients – with recommendations, collaboration and consultation – every step of the way. And we really have a wide array of equipment.”

Below: How the relationship between InDro Forge and InDro Robotics works for clients

Prototyping Lab Canada
Rapid Prototyping Canada



Companies need clients. And clients need knowledgeable staff who truly understand their needs – people who understand both the technical requirements and the customer journey. InDro Forge is fortunate to have newly hired Account Executive Callum Cameron. With a Bachelor of Commerce degree from the University of Ottawa – and a passion for understanding the technical side of things – Callum isn’t simply after sales. He is dedicated to helping customers find the precise solution to their needs, along with keeping them in the loop throughout the process.

“InDro Forge provides clients with end-to-end prototyping services that can turn any idea into a ready-for-market product,” he says. “Our services help businesses of all sizes accelerate their time to market and pathway to profitable growth.”

As part of getting settled into the role, Callum researched other companies offering similar services, drilling right down to the capabilities and machines at those facilities. And he’s reached some conclusions.

“InDro Forge offers a range of specialized services that competitors simply can’t replicate. We have the technical expertise and a state-of-the-art facility that allows clients to choose different levels of involvement along their prototyping journey. Furthermore, our team has years of experience in every phase of rapid prototyping, which allows us to guide our clients in the right direction every step of the way.”




In the transition to InDro Forge, great emphasis was put on identifying areas – and hires – that would allow for greater capacity going forward. Senior Manager of Design and Fabrication Joel Koscielski, who was previously with the Bayview Yards Prototyping Lab, sees that as a significant step forward.

“InDro made an immediate investment in building the Forge team by adding new capacity. We now have an Applications Engineer to help clients develop a solution tailored to their needs, plus a Mechatronics Engineer to bring a greater technical expertise in the integration of mechanical, electrical and code into a single solution.”

The other significant difference is the new ability to tap into the broad expertise of the InDro Robotics engineering team, based at Area X.O.

“The InDro Robotics engineers being included in design reviews or in a design consulting capacity during projects ensures higher quality output from Forge – and the opportunity for more creativity in solutions.  The InDro team also has a large number of industry contacts including trusted suppliers and partners which pre-date the InDro Forge. These contacts have served to bolster the list of partner companies which Forge draws from to deliver great prototypes when the needs exceed our in-house capacity or current equipment capabilities.”

In addition, the InDro Forge team all share a trait that’s reflected in their work ethic, and ultimately the finished product: Passion.

“The best part of starting a project from scratch is being able to breathe life into something that was originally just an idea, maybe just a sketch on a piece of paper,” says Stephan Tzolov.

“Taking that spark of innovation from an idea to reality never gets old. So, I’d say those beginning steps of concept development and iterative design are the most rewarding.”


Below: InDro Forge’s new Mechatronics Engineer, Matthieu Tanguay



We obviously felt there was a synergy in developing InDro Forge. And while the Bayview Yards Prototyping Lab was known for its excellent work, we wanted to both expand in-house capabilities and leverage the expertise of our Area X.O engineering team. The result, we believe, is a solution we intend on refining until it is unrivalled in the country.

“Expanding the core team at InDro Forge, and creating a roadmap under the guidace of Stacey Connors, was the first step,” says InDro Robotics CEO Philip Reece.

“We now have outstanding in-house capabilities, with more hires to come. That, in combination with the ability to tap additional expertise from our Area X.O team, positions InDro Forge for a truly exciting path forward – both for InDro Robotics and for InDro Forge clients.”

Interested in learning more? Feel free to contact Account Executive Callum Cameron here.