Will Robots Replace Humans at Scale?

Will Robots Replace Humans at Scale?

By Scott Simmie

 

The robots are coming. And, in many places, they’re already here.

Robotic automation has long been integral to manufacturing at scale. Think automobile factories, for example. Robotic arms weld, paint, lift heavy parts – all jobs that at one point in the past were done by humans. We’re all familiar with videos of this process.

But in recent years, we’ve seen something of an inflection point in robotics. Autonomous Mobile Robots (AMRs) are increasingly common, shuttling goods and lifting heavy loads. There are robots that can load and unload trucks, using special grippers or end effectors. Delivery robots are ubiquitous in some parts of the world, with China leading the pack. And then there’s drones, with companies like Zipline seemingly perfecting the art of small deliveries and shifting from solely medical deliveries to convenience items. Automated devices now unload and place containers from ships – an innovation that led to labour disruptions as longshoremen in the US protested that these machines jeopardise their livelihoods,

The list goes on. And, with the growth now of humanoid robots – which require no infrastructure changes and can carry out many tasks done by humans – the inevitable question arises: Will robots someday replace humans at scale?

It’s a big question. And, for some, kind of a scary one. So we thought we’d explore some thoughts, and predictions, with someone thoroughly in the know: InDro’s Director of Engineering, Arron Griffiths (below).

A GOOD SOURCE

 

We tapped Arron not only because he’s our Director of Engineering, but because he has lived and breathed technology his entire life. Born in Birmingham, he comes from a line of engineers and technologists that goes way back. In fact, because of his father’s profession his family was the first in his neighbourhood to have the internet, and Arron grew up with computers.

“My father is an internet engineer and my grandfather was a welder by trade, and then his father was an engineer and we think his father was an engineer,” says Griffiths. “There’s a lineage on my dad’s side of engineers and skilled trades we believe going all the way back to being tinkerers or something.”

So it’s not surprising that an engineer who has spent decades in robotics spends a lot of time thinking about robots. Not just the mechanics and software – but about their implications. So we asked him: Will robots replace humans at scale?

“It is basically a fear of everyone around robotics, particularly AI as well,” he says. “The answer is yes and no – and let me elaborate a little bit.”

He does so, with a long-term perspective.

“Every Industrial Revolution has caused disruption in some form or another and displaced humans from classical (tasks) in agriculture or industrial manufacturing…so there is definitely going to be a painful period where robotics is adopted, and jobs that were once held by humans get sort of outpaced.”

The driving force here, as with previous Industrial Revolutions, is economics. If a robot can efficiently carry out tasks at a lower overall cost than humans, the case is there for them to be adopted.

“But the trick is to ensure that the economy is growing at the same time. And if the economy is growing, there will always be the need for more people.”

And if the economy doesn’t grow?

“That’s the real scary part. If the economy doesn’t grow with the scale of robotics adoption, then there would be significant disruption, maybe even humans resisting robotics. But if everything grows at a good rate, I think robotic adoption will take maybe 10 years, but there will be a rough patch.”

 

WE’VE BEEN HERE BEFORE

 

Remember when Automated Teller Machines were introduced at scale back in the 1970s? There was consternation that tellers would become obsolete. That didn’t happen. Yes, they were convenient for a fast withdrawal or deposit, but ATMs can’t answer questions, can’t assist people with the many reasons they go to a bank. And so yes, every bank has one of those machines. But they also still have tellers.

The same concerns popped up when automated checkouts started appearing at retail outlets. Would sales staff and checkout people disappear? They haven’t (though it’s possible some companies have downsized their staff). But again, automation did not simply replace humans.

A big part of the reason is because human interaction is at the very core of many businesses and our daily lives – and robots are not even close to reaching the stage of handling those complex interactions. Human beings possess qualities that robots do not, at least not yet. Things like creativity, emotional intelligence, the ability to adapt to unforeseen situations.

“Humans are still always going to be needed because we’re never going to be able to get robots in the near term to think, feel, imagine, communicate quite like a human with other humans directly,” says Griffiths. “So yeah, I think humans definitely have a one up and will have that advantage for the foreseeable decade or so.”

The other thing Griffiths points out is that robotics are definitely more prevalent in more technologically developed parts of the word – and there are huge swaths of the planet where they are relatively rare and that adoption will take a very long time.

“In Western industry, we’ll definitely see a lot more automation. But in emerging markets like Africa, India, (they’re) still going to rely on humans. So it depends on where you are in the world, I think.”

The caveat? It used to always be said that robots are perfect for jobs that are dirty, dull and dangerous. That’s still true. But with advances in AI and Large Language Models (as well as the development of humanoids and other collaborative robots, or co-bots intended to work alongside humans) we are potentially at the early stages of a shift. Robots will, in future, take on more tasks that aren’t simply one of the three Ds.

Below: Agility’s Digit, showing off its ability to pick up ingredients for a pasta dinner. Yes, it’s slow. But you can be confident it will get faster, Still, we’re willing to bet most people will prefer to do their own shopping. A robot can’t make the split-decisions a human is likely to make when selecting one product over another, for example. 

INDRO’S TAKE

 

We are definitely in changing times. Advances in robotics will continue – and most of the current demand is indeed for robots that can carry out those dirty, dull and dangerous jobs. But, over time, we’ll see more of them carrying out other tasks and developing greater problem solving skills – including (with AI) the ability to communicate more easily with humans.

But are we on the cusp of an era where there will be mass displacement of humans?

“There will be some disruption in the future for sure,” says InDro Founder and CEO Philip Reece. “But, as we’ve seen with previous Industrial Revolutions and the adoption of ATMs etc, the sky didn’t fall. There will also be more jobs created in robotics, AI, and other related fields we can’t even foresee yet. Will robots continue to expand in fields where they can help humans and productivity? Absolutely. But human beings are resilient, creative and adaptable. And – though I’m obviously a fan of what robots can do – there will always be a human advantage. Yes, the robots are coming. But they’re not going to rule the world.”

InDro, by the way, focuses on custom R&D and robots for clients and our own inspection and scanning products that cater to the dirty, dull and dangerous. We’re not out to replace your job – only to enhance productivity where it’s a fit.

Kiwibot: A Level 4 Autonomy robotic solution for delivery, advertising – and more

Kiwibot: A Level 4 Autonomy robotic solution for delivery, advertising – and more

By Scott Simmie

There’s been a quiet robotics revolution underway.

At some 20 campuses across the US – and elsewhere globally – small robots built by Kiwibot have been busy. Day and night, they carry out autonomous food deliveries for hungry students. Sometimes, those same robots are branded with advertising for special events and carry a logo or QR code rather than food.

“Clients are willing to pay to have the bots branded and have them appear at specific events,” explains Maria Valdez, a Business Developer with the company. “For example, for Amazon Web Services (AWS), we were in almost five different locations.”

With between 400 and 500 robots currently deployed, Kiwibot has made significant and impressive inroads toward a future where robotic delivery is likely to become ubiquitous. And the company has big plans going forward.

Below: A video showing a university Kiwibot deployment. The company has grown significantly during the three years since this was produced



THE BUSINESS CASE

 

It’s pretty easy to see the appeal for advertising. Robots aren’t yet common, so they catch people’s attention. The Kiwibot robots have also been designed to appear friendly or ‘cute’ to humans, so there’s immediate interest when one rolls up. Ad campaigns also tend to be brief and don’t require a long-term financial commitment.

When it comes to delivery, that’s a different scenario. While robots may well have a cool factor, businesses always take a hard look at the bottom line. So Kiwibot needs to deliver not only food – but also a return on investment. Here, the company says it has consistently demonstrated significant savings when compared with using human couriers.

That’s proven to be enough incentive for Kiwibots to be deployed on more than 20 university campuses so far in the US, with more to come. Kiwibot has partnered with a global food services company on these campuses.

“The students use an app and order food directly from campus restaurants run by this company – or from any other restaurants that partner with this food services firm,” explains Business Developer Valdez. “One of our technicians takes the food and loads the bot. The bot then navigates autonomously from Point A to multiple points to deliver the packages.”

In addition to the cost savings, data shows Kiwibot delivery is faster than having a human carry out the task – meaning customers receive their food as quickly as possible.

 

EXPANSION

.

Though Kiwibot has an impressive track record with US university campuses, it also has broader ambitions. The company is expanding and pursuing other global partnerships. 

One such partnership is in Canada with Real Life Robotics, where together they are running an urban pilot program for food delivery with Skip. In this pilot, robots are roaming the streets of Markham, Ontario (and generating a lot of buzz). 

Kiwibot has also formed a strategic alignments with a major warehouse automation and last-mile delivery firm, where it is deploying its larger capacity Cargobot (designed for moving cargo) on a 24/7 basis. In addition, Kiwibot has deployments in multiple locations in the tech-heavy Middle East.

But the biggest plans have yet to be fully unveiled. Kiwibot is transitioning to Robot.com – with plans for an official launch this summer. Full details are being kept under wraps at the moment, but the home splash page looks pretty intriguing.

Kiwibot has also been promoting a leasing model, where you can rent a robot – in the case of advertising – for as little as two hours. The company leases three different bots: Kiwibot Leap (for food and small package delivery), Kiwibot for Advertising (where branding is applied), and the company’s Cargobot for warehouses and factories.

All robots function autonomously, though a human being is always monitoring their progress and can take over if necessary at places like crowded crosswalks. What’s more, the Kiwibot Leap is capable of scanning walkways for anomalies while it carries out deliveries. If it spots something amiss, like a large crack or pothole etc., it can flag the location and capture an image of the anomaly. That data can then be shared with the university (or municipality) so that maintenance can rectify the problem.

Below: Fresh food, freshly delivered, via Kiwibot





Kiwibot

INDRO’S TAKE

 

We’re impressed with Kiwibot. The company has been executing on its strategic vision and appears to have a solid growth trajectory. Its platforms are technologically solid with Level 4 autonomy and have been designed to blend into our human world.

“Getting robots from the R&D stage into real-world applications – particularly applications in the public space – isn’t easy,” says InDro Founder and CEO Philip Reece. “Getting more than 400 robots out and running on a daily basis is no small task, and Kiwibot is poised to be a major contender – if not a leader – in the robotic delivery and advertising space. We are thrilled to see the partnership with Real Life Robotics and hope to see that expand in future.”

We’ll be keeping an eye on Kiwibot, and will update when Robots.com is officially launched.

 

Robots on earth help prepare for research on the moon

Robots on earth help prepare for research on the moon

By Scott Simmie

 

What could small robots on earth have to do with exploration on the moon?

Quite a lot, as it turns out. Professors and engineering students at Polytechnique Montréal have been busy writing algorithms and running experiments with robots and drones with one goal in mind: To enable them to explore unfamiliar and even hostile surroundings far beyond the reach of GPS or other forms of precision location technology.

“What we want to do is to explore environments including caves and surfaces on other planets or satellites using robotics,” explains Dr. Giovanni Beltrame (Ph.D.), a full professor at Polytechnique’s Departments of Computer Engineering and Software Engineering.

Before we get to the how, let’s address the why.

“Caves and lava tubes can be ideal places for settlement: They can be sealed and provide radiation shielding. There’s also a chance of finding water ice in them,” says Dr. Beltrame.

Of course, it’s also less risky – and less expensive – to send robots to other planets and moons rather than human beings. They don’t require life support, don’t get tired (with the exception of having to recharge), and they can gather and process data quickly.

Just think of all the data that’s been acquired on Mars by the twin Rovers and the Mars helicopter.

Below: A selfie taken by NASA’s Perseverance rover November 1, 2023, during the the 960th Martian day of its mission. The rover was built with a focus on astrobiology, searching for signs of ancient microbial life on the red planet. Image courtesy of NASA.

Mars rover Perseverance

PREPARE ON EARTH, DEPLOY IN SPACE

 

It’s a pretty ambitious vision. But for Beltrame and his team, it’s also very real. And it requires a lot of work and research here on earth.

“So to get there (space) and do this with multiple robots, we’ve developed all sorts of technologies – navigation, perception, communication, coordination between the robots, and human-robot interfaces,” he says.

“We’re doing all these things, because our goal is to use a swarm of robots to do planetary exploration. There’s more, but that’s it in a nutshell.”

When you go to the moon, there’s no equivalent of GPS. And environments like caves can be really tricky – both in terms of robots understanding where they are, and also communicating with other robots beyond line of sight.

With the right technologies and algorithms, that communication is possible. And much of Beltrame’s research has involved testing this on earth. In particular, he’s focusing on how groups of robots could take on such tasks collaboratively.

“So our primary activities focus on swarm robotics,” he says.

Generally that starts with simulation models. But there are limits to simulations – and real-world testing is a big part of what’s going on at Polytechnique.

“So we do have this deployment philosophy that we try our technologies in simulation, but then we want to go to deploying robots. You can have the best simulation in the world, but there’s still a reality gap and it’s very extremely important to try things on the real robots,” he says.

“We have a saying in the lab, which is: ‘Everything works in simulation’. You can always make your algorithm work in simulation, and then you get out in the field and things go wrong. So one thing we do in the lab is we always do the full stack. That’s why we need to have real robots. And we don’t only do experiments with real robots in the lab, we do them in the field.”

MIST

 

The lab he’s referring to is known as Polytechnique’s MIST, which stands for Making Innovative Space Technology. Dr. Beltrame is the director of the lab, which focuses on computer engineering targeted towards space technologies. In addition to the researchers, the lab is home to a *lot* of robots. There are big ones, small ones, wheeled ones, flying ones (drones) – literally “hundreds” of robots at the lab.

But as Dr. Beltrame emphasised, proving that something will truly work requires testing in environments that are similar to what might be found on the moon or elsewhere. Locations where he’s carried out fieldwork include:

  • Lava Beds National Monument in California (with NASA JPL)
  • The Kentucky mega-cave with the CoSTAR team
  • Tequixtepec in Mexico with SpéléoQuébec

Just check out the images below of field work, courtesy of Dr. Beltrame:

THE INDRO CONNECTION

 

Some of the robots used in the MIST lab – and perhaps eventually on the moon – arrived via InDro Robotics, a North American distributor for AgileX. In fact, Polytechnique has purchased a number of AgileX products, including platforms that InDro has modified to help speed the R&D process. These include:

  • 24 LIMOs and simulation table
  • AgileX Scout Mini
  • AgileX Scout 2.0
  • Two AgileX Bunker Mini platforms, with custom builds by InDro

We’ve written about the LIMO before – a small, affordable and versatile robot capable of perceiving its environment and even Simultaneous Localization and Mapping out of the box. It’s also an ideal size, particuarly when doing multi-agent/swarm robotics, for use in the lab. (You’d run out of space pretty fast with something much larger).

“The LIMOs are a very good platform for Simultaneous Localization and Mapping  – and perception in general,” says Beltrame.

He says they’re a good choice “because they have a 3D camera, they’re lighter, agile, and are sufficiently low in cost. So we can use them in large numbers. Another good thing about the LIMOs is that once you have a lot of similar robots that are reasonably agile, you can actually make a full deployment of software (across all robots).”

That makes them an ideal platform for multi-agent research and development.

“For example, we developed this tool called Swarm SLAM where many robots collaborate to have a better perception of the environment. We’re currently testing it with the full fleet of LIMOs. That’s something we would have believed impossible with larger robots for logistical reasons.”

Though the focus is firmly on space, the Polytechnique Montréal research has applications on earth. Swarms of robots could aid in disaster response, Search & Rescue, and more.

 

FAVOURITE ROBOT

 

The LIMO isn’t the only AgileX product in Polytechnique’s stable. And while Beltram likes all of them, he has a soft spot for one in particular.

“I would say that my favorite robot is the Scout Mini,” he says. “It’s fast, it’s agile and the control is extremely precise.”

In fact, Beltrame often takes the Scout Mini with him when doing school presentations. It’s small enough to be carried in the trunk of his car and hand-carried to classrooms. His team has also used the platform to test a new code for path planning and sophisticated energy calculations. It’s capable of tracking the additional energy required for climbing inclines, for example, then calculating when the robot needs to return home to wirelessly recharge.

As always, InDro works with clients to deliver precisely what they need. This saves time for those institutions and corporations on builds, allowing them to get on with the business of R&D.

“We’ve done quite a bit of integration for them,” says Luke Corbeth, InDro’s Head of R&D Sales.

“For example (see picture below), we provide a top plate with all required hardware mounted and integrated. They then add their own sensors, protective structure, etc. So this is a great example of how we work with clients on a case-by-case basis depending on their needs as robotics isn’t one-size-fits-all.”

Polytechnique mini bunkers

ONE SMALL STEP…

 

With all of this research, what comes next? Will the work being done today at Polytechnique eventually find its way off this planet?

“The answer is it’s going to happen very soon,” says Beltrame. Sometime later this year, a rocket will head toward the moon carrying three small robots. It’s called the Cadre mission.

A trio of small rovers will work as a team to explore the moon autonomously, mapping the subsurface in 3D, collecting distributed measurements, and showing the potential of multirobot missions,” says NASA’s JPL website. One of Beltrame’s students is working on that mission with JPL.

“This is one example of how the work that we’ve been doing in this lab, in the end – through students that were here – become real missions,” says Beltrame.

And that’s not all. As early as 2026, a Canadian-built rover could land on the moon in Canada’s first moon mission.

Its task? To explore the moon’s south polar region in search of “water ice.” This ice is critical to long-term human habitation on the moon – and can also be converted to fuel, both for energy on the moon and potentially to refuel other spacecraft with destinations further afield.

“I have an engineer from the Canadian Space Agency that’s a student of mine that’s developed the Mission Planner. So the idea is that we – our lab – developed the Mission Planner for the Canada rover that’s going to the moon.”

Here’s a look at that planned mission, from the CSA:

 
 
 

AND THERE’S MORE

 

There was some big news this week from Polytechnique Montréal. On January 24 it announced the formation of ASTROLITH, a body for “research in space resource and infrastructure engineering.”

It’s the first Canadian group dedicated to lunar engineering, according to a news release.

Comprising experts from all seven Polytechnique departments, ASTROLITH will pursue the mission of helping to develop next-generation technologies and training the engineers of tomorrow to ensure Canada’s presence in space and lunar exploration, as well as addressing critical needs on our planet within the context of climate change, resource management and sustainable development,” reads the release.

So while the emphasis is on the moon, ASTROLITH will also result in some very practical – and urgent – use-cases on our home planet.

“As encapsulated in its Latin motto Ad Lunam pro Terra, ASTROLITH is dedicated to developing technologies with direct impacts here on Earth: enabling development of infrastructure in the Far North or facilitating the energy transition, for example,” says the release.

“Indeed, the research unit’s founding members are already involved in developing technologies in various areas related to space and extreme environments, from design of resilient habitats and infrastructures for remote regions to deployment of cislunar communications technologies to development of advanced robotics systems for prospecting and mining, among many others. Their work is bolstered by contributions from specialists in life-cycle analysis, sustainable development and space-related policy development.”

The team is composed of academics and researchers that span all seven Polytechnique departments. Beltrame, not surprisingly, is on the team – which is pictured below. (He’s in the back row, centre.)

 

INDRO’S TAKE

 

We find the work being carried out at Polytechnique Montréal, the MIST lab – and now ASTROLITH – both fascinating and important. It’s also a terrific example of how dedicated researchers and students can develop and test projects in the lab that eventually have real-world (and off-world) applications.

“I’m incredibly impressed with the work being carried out here, and the fact it can be put to positive use-cases both on earth and in space,” says InDro Robotics CEO Philip Reece.

“We wish Dr. Beltrame and his colleagues well, and we’ll certainly be watching these lunar missions with great interest. It’s always a pleasure when InDro can support teams doing important work like this.”

You can find more about the MIST lab here. And if you’d like to talk about AgileX robots (or any other robotic solution), connect with an InDro expert here

Assistive devices on the rise at Korea’s Robot World Conference

Assistive devices on the rise at Korea’s Robot World Conference

By Scott Simmie

A major robotics conference is underway in Seoul, South Korea.

Robot World 2023 features some 200 exhibitors and 700 booths, ranging all the way from heavy hitters like Hyundai (which makes robots for industrial purposes) through to companies that manufacture the various widgets that make up the robot supply chain. There are manufacturers of wheels, servos, end effectors, lubricants, cable management systems – you name it, you’ll find it.

Need a hand? There’s no shortage of robotic arms. While many are suited for factory and warehouse work, others are destined for the food services industry. Turn a corner and you’re more likely than not to see an arm smoothly pouring a coffee, grabbing a soft drink or snack and presenting it to an attendee.

Below: A Hyundai robot that can lift and reposition autonomobiles. It’s part of the Hyundai WIA (World Industrial Ace) division.

USE-CASES

 

The robots at this show illustrate the many use-cases. There are welding robots, pick-and-place machines, and heavy-lift AMRs (Autonomous Mobile Robots) that can lift more than a ton. Need something stacked, sorted, inspected, delivered? Want a manipulator arm you can program to start preparing French fries the moment a take-out order has been placed by an app? Need a robot to move a car?

At Robot World 2023, you’ll find all of the above – and more.

 

ASSISTIVE DEVICES

 

But there was another category of robot on display at the exhibition: Assistive medical devices. Specifically, very smart machines that can be used for patients requiring rehabilitation.

InDro Robotics, which was invited to attend Robot World 2023, was struck by the number of companies with products in this sector. There were ground robots – friendly-looking devices that keep an eye on vulnerable people and can call for assistance if there’s a fall or some other crisis. But more intriguing to us were machines that can play a role – both physiologically and psychologically – in helping to rehabilitate someone from a serious injury or other challenging condition.

Below: A shape-shifting wheelchair wheel can climb stairs

Robot World Microsurgery

RE-LEARNING TO WALK

 

Like any major convention, exhibitors range from established global companies like Hyundai all the way to smaller startups with a great idea. And one that caught our attention is a company called Astrek Innovations. Its CEO and co-Founder is Robin Kanattu, a young engineer from Kerala in southern India.

“We are mainly focussing on building and designing products for the 20 per cent of people who are suffering from disability and accessibility issues,” says Robin. “One of the products is the lower limb exoskeleton, for people who are suffering form lower limb disabilities.”

As the company’s website explains:

“Established in 2018, we develop cutting edge solutions to some of our most complex problems – Disability and Rehabilitation. Leveraging our knowledge and expertise in robotics, machine learning and motion capture, we design devices that would transform the current state-of-the-art in the rehabilitation and assistive technology arena.

“Our magnum opus is a wearable robotic device, an exoskeleton, that would help people with lower-limb immobility walk again. A culmination of motorised limb braces, motion capturing & tracking; and machine learning; this device would transform rehabilitation into a precise, immediate treatment protocol.”

Established in 2018, the company has been building and testing versions of this product for four years.

“Now we have a final version, and we wanted to provide independence for people who are suffering form these disabilities,” he says.

A lot of research has gone into this product. Robin says a great deal of groundwork was spent capturing data on healthy people: How they walk, how they sit, how gaits alter during the course of a stride.

“Now we use that same data to predict the walking pattern of users, so they will have much more stable walking and standing while using the device.”

The exoskeleton provides support and strength and moves the legs. Forward-facing crutches are used to aid in stability. The product can be used on someone who is paralysed from the waist down, people recovering from strokes, those with certain genetic issues and people recovering from accidents.

 

HOW THE IDEA WAS BORN

 

Robin is an electrical engineer. But there was a personal motivation to put his skills to use in this arena.

“My grandfather had this issue. After having an accident, he was not able to walk properly. And after doing knee replacement surgery he was not able to walk again,” he explains. “So that’s how our team came togeher.”

Astrek has been recognized for product excellence at Robot World 2023, and Korea has brought the company in on a program called the K Startup Grand Challenge. Robin has been working in Korea on streamlining the manufacturing chain, working with mentors and looking for collaboration.

But the product, he says, is fully functioning. And people who are paralyzed from the waist down have been able to walk with it.

“Psychologically, they are so happy,” he says. “Their sole dream is to walk again, and we are happy to see them doing that.”

Robin did not have the prototype at the show because of red tape involving flying the batteries to Seoul. He’s pictured below with a banner showing the device.

Robin Kanattu Astrek

ROBOT REHABILITATION

 

Another company, RpiO, has already cracked the market. Its R-BoT plus is a device designed for people with central nervous system damage (including stroke, paraplegia, spinal cord injury etc.). It’s more of a rehab device designed for hospital settings, but allows users to exercise lower extremities while lying down or standing upright. The product is approved by a Korean regulatory body (Korean Ministry of Food and Drug Safey, formerly the KFDA), and the company has already sold seven units inside Korea.

“We have major hospitals, locals hospitals and private hospitals who are using the machine with people who have damage impacting their lower body,” explains CEO Jay Moh.

“Because KFDA is a standard in Southeast Asia, we are starting to sell in Hong Kong, Malaysia and Singapore. Many doctors have come to see our robots.”

The R-BoT plus works in three modes: Passive, active and resistive – depending on the patient’s abilities. What sets this device apart is that the person exercising watches a large-screen display during rehabilitation sessions. The display features outdoor scenes, and with every ‘step’ made, a footprint appears on the ground and the patient has a visual cue that they’re making progress. Distance covered, calories burned and heart rate are all displayed as well, providing further incentive.

“Once the machine starts, they look at the display,” he says. “This has been medically tested; this stimulates the brain and releases a chemical that stimulates recovery. People feel better – they enjoy the workout and feel like they’re walking through the grass.”

For those ready to actually move in the real world, the company also has a product called EXOwalk. Here, an exoskeleton is strapped to the patient’s limbs and can help move their legs (again, in multiple modes). But this exoskeleton is fixed to a rolling robotic platform – meaning the patient actually moves forward on the ground, rather than being fixed to a static machine.

“This is driven – so they actually move along the hallway in the facility.”

 

EXO Motion

 

For patients with upper limb motor impairments, the company has developed a product called EXO motion. This is strictly a portable exoskeleton device that attaches to the arm. In active mode, it detects myolectric signals from the user’s arm and – with some sophisticated algorithms and mechatronics – converts those signals into mechanical motion that moves the arm.

In addition to these robotic devices, RpiO also is a leading company in software designed to help people with dementia.

“We have a high population of elderly people who suffer with this,” says Moh. “So the market is growing very fast.”

Below: CEO Jay Moh, followed by the R-BoT plus and display. Note the footprints…

 

Robot World Korea R-BoT plus
R-BoT plus display

INDRO’S TAKE

 

We enjoyed checking out these devices at Robot World 2023 – and were pleased to see yet more evidence of #robotsforgood.

“Robots can be tremendous tools on their own,” says InDro Robotics CEO Philip Reece. “But there’s something truly special about products designed to directly help human beings improve their mobility and health. We applaud the inventors and engineers who develop these products, and look forward to even more assistive device breakthroughs in future.”

And a final note: The feature image at the top of this story shows some very, very, tiny arms used for microsurgery. InDro was able to take a run at the controls (pictured below). It took some patience, but we were able to grasp an impossibly small elastic band.

Now picture a highly skilled microsurgeon operating on someone remotely.

It’s happening now, thanks to robotics.

Robot World Microsurgery