Thirty-one drones detected at Niagara Falls during eclipse – most of them breaking regulations

Thirty-one drones detected at Niagara Falls during eclipse – most of them breaking regulations

By Scott Simmie


The solar eclipse attracted more than sightseers to Niagara Falls.

It also brought out drones – with as many as 31 detected at a single point in time. A few of those drones were authorised to be flown by law enforcement, but the majority were being flown by people who either weren’t aware of the regulations, or wilfully ignored them.

That’s because Niagara Falls is Class F Airspace. And the Park makes the policies very clear:

“Niagara Parks does not permit the use of drones within the property for any recreational purposes. Use of drones for commercial projects (commercial film, photography, survey or engineering work, etc.) may be considered and approved under a Permit,” reads the Park’s website page outlining the rules for film, photography, recording and drones. It goes on to the nuts and bolts of the airspace restriction.

“The airspace surrounding Niagara Falls is classified as CYR-518 Class F Restricted Airspace which further requires a Letter of Authorization from Transport Canada prior to Niagara Parks issuing a permit. Transport Canada’s authorization is required no matter the size or weight of the drone or how low or high the flight path.”

So no, you can’t take your sub-250g drone and think you’re in the clear.

But that didn’t stop a lot of people from putting drones into the air. And that’s cause for concern, given that helicopters and other traditional aircraft with special permission are in that same airspace for tours.

Below: Collage of the eclipse by Solar Eclipse by KMHT Spotter, Wikimedia Commons 4.0.

Solar Eclipse Wikimedia Commons 4.0 KMHT Spotter



Word of the multiple drones in the air came at the Canadian Hazmat and CBRNE Summit in Kitchener, where that acronym stands for Chemical, Biological, Radiological, Nuclear, and Explosive. It brought together First Responders, law enforcement and Hazmat specialists from across the country. The conference featured a heavy emphasis on how technology – drones, ground robots, ROVs, counter-UAS systems and more – have become essential tools for law enforcement and other First Responders.

One of the sessions focused on the D-Fend Solutions EnforceAir counter-UAS system, which was seen in use in an exercise with Niagara Police during the solar eclipse to monitor drones. It’s a critical area because there are often crewed aircraft, helicopters in particular, taking tourists for flights over the falls. It is also, as noted, restricted airspace where no drones that do not have special authorisation should be in the air.

But the system picked up plenty of them.

“We saw at one point 31 drones in the air at one time at Niagara Falls during the eclipse,” David Beatty, Director of Sales for D-Fend Solutions Canada, said in a presentation. That kind of traffic, he added, could mean “a possibility of a mid-air collision not just between the drones, but also with the manned aviation that was flying at the same time at the same place.”




A small number of those drones were being flown by law enforcement and marked as “authorised” by the EnforceAir system operator. But the vast majority were not. And not only were those drones in restricted airspace, at least one was detected breaking two other regulations: It was flying at an altitude of 1640′ above ground level and far Beyond Visual Line of Sight. (Transport Canada regulations limit drones – in airspace where they can be flown – to 400′ AGL and within Visual Line of Sight without special authorisation.)

“The system identified the operator was four kilometres away flying at that altitude which was impeding both fixed wing and rotary aviation,” said Beatty in a follow-up interview with InDro Robotics. “Our understanding is that Niagara Police, because they have the residence location, will be conducting followup visits to the perpetrators.”

The EnforceAir operator team was also able to relay information about drone positioning in real-time to a helicopter pilot who was carrying out flights over the falls, ensuring he had airspace awareness.

Below: David Beatty with the D-Fend system during a demonstration. Scott Simmie photo.




Developed in Israel, D-Fend Solutions originally began as a counter-drone solution for multiple Tier One agencies – meaning special forces and other elite services in the military and intelligence sectors around the world. Current clients listed on its website include three US federal departments: Defence, Homeland Security and Justice. A D-Fend system is also being evaluated for airport use by the FAA.

But D-Fend Solutions is now seeing opportunities in the broader market. This has come with both the widespread proliferation of drones, as well as their potential to be modified for nefarious and criminal purposes – including the frequent attempts to deliver contraband to prison yards.

“We were primarily dealing in the military realm, but based upon the threats that have occurred to public safety we’ve expanded into that marketplace,” explained Beatty. D-Fend Solutions products have been used at large public gatherings, to detect and mitigate drones at prisons and near critical infrastructure – including major airports.

And while drones can potentially cause conflict with traditional crewed aircraft, Beatty says there’s concern about another threat that has emerged in recent years.

“As we see in the conflict in the Ukraine, they are the poor man’s Air Force. Drones are very easily weaponised, and that could be someone flying the drone directly into someone, or placing some form of munition or chemical irritant on it.”

Beatty says clients have also seen an increase in the use of drones at protests, flying dangerously close over the heads of people – and even interfering with police drone activity.

Below: D-Fend Solutions at a demonstration for First Responders

D-Fend Niagara




There’s a variety of types of c-UAS systems on the market. They range from direct energy type weapons (think lasers) to kinetic (nets, etc.), frequency jamming and radar. The D-Fend Solutions system is a passive cyber-solution, meaning there’s no direct jamming or kinetic action. It also meets what are sometimes called the “Four Pillars” of a complete c-UAS system, including the ability to detect, track, identify and mitigate.

“The system detects drones at ranges in excess of five kilometres,” says Beatty. “We will track the drone so we know its flight path. We identify the drone to the point where we get the serial number of the drone, the controller, the make and model of the drone, with options for mitigation.”

Before we get to mitigation options, it’s worth explaining that the D-Fend Solutions system is constantly listening for the unique characteristics of the drone. That’s how it detects not only the type of drone but also other relevant information.

In terms of mitigation, there are multiple options. D-Fend Solutions can support a geofence, for example, that prevents drones marked as unauthorised from flying into a certain area. They’ll simply hit the boundaries of that geofence and can then be tracked or fended off. A rogue drone can also be forced to simply stop and hover in a location so that ground observers can get a closer look to determine if it poses a threat.

“The final option is that we can take control of the drone and send it on a safe passage to a safe collection point. And the emphasis is always on control.”

And how does the system do that passively, without jamming frequencies (where Industry Canada has some pretty strict rules)? Quite simply, it can trick the drone so that D-Fend Solutions becomes the control system.

Two of multiple drones being tracked by D-Fend Solutions at a demonstration outside Kitchener. 



The D-Fend Solutions EnforceAir system identified the location of the drone pilots violating the regulations at Niagara Falls on the day of the eclipse. An officer involved said during the conference there will be a follow-up with the pilot of that BVLOS drone flying at 1640′. It’s unclear whether this will be an informal education session, or whether any further action will be taken.

But sometimes, education is also a key tool. And that’s enabled by the system pinpointing the location of the pilot.

“This allows for a form of soft policing – in lieu of mitigating the drone, the police are able to educate the public with direct intervention by police units and the drone operator,” says Beatty.

Thankfully, there were no mishaps on April 8. Crewed air assets (and police drone operators) were kept in the loop on the location of all unauthorized drones.

Below: The company even has a version that fits in a backpack




The D-Fend Solutions system provided important airspace awareness – and was a critical safety tool – during the eclipse event at Niagara Falls. The system has been demonstrated at several other major public events in Canada, providing critical awareness to law enforcement and other First Responders. The company’s EnforceAir product won first place for hardware and systems design at the 2023 AUVSI XCELLENCE awards.

“There’s a growing demand for c-UAS products globally, whether for public safety, critical infrastructure, airport security – even for protection from pirates on the high seas,” says InDro Robotics CEO Philip Reece.

“D-Fend Solutions EnforceAir provided an important solution during the Niagara demonstration, and its ability to mitigate without jamming or kinetics is impressive.”

You can learn more about D-Fend Solutions here.

We’d be remiss if we didn’t also mention Bravo Zulu Secure, an InDro sister company that also offers detection and mitigation solutions. The incident detailed above is also reminiscent of the detection of many illegal drone flights in Ottawa during the convoy protests. If you haven’t seen that one, it’s definitely worth a read.


George Mason U. researchers enable robots to intelligently navigate challenging terrain

George Mason U. researchers enable robots to intelligently navigate challenging terrain

By Scott Simmie


Picture this: You’re out for a drive and in a hurry to reach your destination.

At first, the road is clear and dry. You’ve got great traction and things are going smoothly. But then the road turns to gravel, with twists and turns along the way. You know your vehicle well, and have navigated such terrain before.

And so, instinctually, you slow the vehicle to navigate the more challenging conditions. By doing so, you avoid slipping on the gravel. Your experience with driving, and in detecting the conditions, has saved you from a potential mishap. Yes, you slowed down a bit. But you’ll speed up again when the conditions improve. The same scenario could apply to driving on grass, ice – or even just a hairpin corner on a dry paved road.

For human beings, especially those with years of driving experience, such adjustments are second-nature. We have learned from experience, and we know the limitations of our vehicles. We see and instantly recognize potentially hazardous conditions – and we react.

But what about if you’re a robot? Particularly, a robot that wants to reach a destination at the maximum safe speed?

That’s the crux of fascinating research taking place at George Mason University: Building robots that are taught – and can subsequently teach themselves – how to adapt to changing terrain to ensure stable travel at the maximum safe speed.

It’s very cool research, with really positive implications.

Below: You don’t want this happening on a critical mission…

George Mason Xuesu Xiao Hunter SE



Those are the initials of Dr. Xuesu Xiao, an Assistant Professor at George Mason University. He holds a PhD in Computer Science, and runs a lab that plays off his initials, called the RobotiXX Lab. Here’s a snippet of the description from his website:

“At RobotiXX lab, researchers (XX-Men) and robots (XX-Bots) perform robotics research at the intersection of motion planning and machine learning with a specific focus on robustly deployable field robotics. Our research goal is to develop highly capable and intelligent mobile robots that are robustly deployable in the real world with minimal human supervision.”

We spoke with Dr. Xiao about this work.

It turns out he’s particularly interested in making robots that are particularly useful to First Responders, and carrying out those dull, dirty and dangerous tasks. Speed in such situations can be critical, but comes with its own set of challenges. A robot that makes too sharp a turn at speed on a high friction surface can easily roll over – effectively becoming useless in its task. Plus, there are the difficulties previously flagged with other terrains.

This area of “motion planning” fascinates Dr. Xiao. Specifically, how to take robots beyond traditional motion planning and enable them to identify and adapt to changing conditions. And that involves machine vision and machine learning.

“Most motion planners used in existing robots are classical methods,” he says. “What we want to do is embed machine learning techniques to make those classical motion planners more intelligent. That means I want the robots to not only plan their own motion, but also learn from their own past experiences.”

In other words, he and his students have been focussing on pushing robots to develop capabilities that surpass the instructions and algorithms a roboticist might traditionally program.

“So they’re not just executing what has been programmed by their designers, right? I want them to  improve on their own, utilising all the different sources of information they can get while working in the field.”




The RobotiXX Lab has chosen the Hunter SE from AgileX as its core platform for this work. That platform was supplied by InDro Robotics, and modified with the InDro Commander module. That module enables communication over 5G (and 4G) networks, enabling high speed data throughput. It comes complete with multiple USB slots and the Robot Operating System (ROS) library onboard, enabling the easy addition (or removal) of multiple sensors and other modifications. It also has a remote dashboard for controlling missions, plotting waypoints, etc.

Dr. Xiao was interested in this platform for a specific reason.

“The main reason is it is because it’s high speed, with a top speed of 4.8m per second. For a one-fifth/one-sixth scale vehicle that is a very, very high speed. And we want to study what will happen when you are executing a turn, for example, while driving very quickly.”

As noted previously, people with driving experience instinctively get it. They know how to react.

“Humans have a pretty good grasp on what terrain means,” he says. “Rocky terrain means things will get bumpy, grass can impede a motion, and if you’re driving on a high-friction surface you can’t turn sharply at speed. We understand these phenomenon. The problem is, robots don’t.”

So how can we teach robots to be more human in their ability to navigate and adjust to such terrains – and to learn from their mistakes?

As you’ll see in the diagram below, it gets *very* technical. But we’ll do our best to explain.

George Mason Hunter Xuesu Xiao



The basics here are pretty clear, says Dr. Xiao.

“We want to teach the robots to know the consequences of taking some aggressive maneuvers at different speeds on different terrains. If you drive very quickly while the friction between your tires and the ground is high, taking a very sharp turn will actually cause the vehicle to roll over – and there’s no way the robot by itself will be able to recover from it, right? So the whole idea of the paper is trying to enable robots to understand all these consequences; to make them ‘competence aware.'”

The paper Dr. Xiao is referring to has been submitted for scientific publication. It’s pretty meaty, and is intended for engineers/roboticists. It’s authored by Dr. Xiao and researchers Anuj Pokhrel, Mohammad Nazeri, and Aniket Datar. It’s entitled: CAHSOR: Competence-Aware High-Speed Off-Road Ground Navigation in SE(3).

That SE(3) term is used to describe how objects can move and rotate in 3D space. Technically, it stands for Special Euclidean group in three dimensions. It refers to keeping track of an object in 3D space – including position and orientation.

We’ll get to more of the paper in a minute, but we asked Dr. Xiao to give us some help understanding what the team did to achieve these results. Was it just coding? Or were there some hardware adjustments as well?

Turns out, there were both. Yes, there was plenty of complex coding. There was also the addition of an RTK GPS unit so that the robot’s position in space could be measured as accurately as possible. Because the team soon discovered that intense vibration over rough surfaces could loosen components, threadlock was used to keep things tightly in place.

But, as you might have guessed, machine vision and machine learning are a big part of this whole process. The robot needs to identify the terrain in order to know how to react.

We asked Dr. Xiao if an external data library was used and imported for the project. The answer? “No.”

“There’s no dataset out there that includes all these different basic catastrophic consequences when you’re doing aggressive maneuvers. So all the data we used to train the robot and to train our machine learning algorithms were all collected by ourselves.”




As part of the training process, the Hunter SE was driven over all manner of demanding terrain.

“We actually bumped it through very large rocks many times and also slid it all over the place,” he says. “We actually rolled the vehicle over entirely many times. This was all very important for us to collect some data so that it learns to not do that in the future, right?”
And while the cameras and machine vision were instrumental in determining what terrain was coming up, the role of the robot’s Inertial Measurement Unit was also key.

“It’s actually multi-modal perception, and vision is just part of it. So we are looking at the terrain using camera images and we are also using our IMU. Those inertial measurement unit readings  sense the acceleration and the angular velocities of the robot so that it can better respond,” he says.

“Because ultimately it’s not only about the visual appearance of the terrain, it is also about how you drive on it, how you feel it.”




Well, they’re impressive.

The full details are outlined in this paper, but here’s the headline: Regardless of whether the robot was operating autonomously heading to defined waypoints, or whether a human was controlling it, there was a significant reduction in incidents (slips, slides, rollovers etc.) with only a small reduction in overall speed.

Specifically, “CAHSOR (Competence-Aware High-Speed Off-Road Ground Navigation) can efficiently reduce vehicle instability by 62% while only compromising 8.6% average speed with the help of TRON (visual and inertial Terrain Representation for Off-road Navigation).”

That’s a tremendous reduction in instability – meaning the likelihood that these robots will reach their destination without incident is greatly improved. Think of the implications for a First Responder application, where without this system a critical vehicle rushing to a scene carrying medical supplies – or even simply for situational awareness – might roll over and be rendered useless. The slight reduction in speed is a small price to pay for greatly enhancing the odds of an incident-free mission.

“Without using our method, a robot will just blindly go very aggressively over every single terrain – while risking rolling over, bumps and vibrations on rocks, maybe even sliding and rolling off a cliff.”

What’s more, these robots continue to learn with each and every mission. They can also share data with each other, so that the experience of one machine can be shared with many. Dr. Xiao also says the learnings from this project, which began in January of 2023, can also be applied to marine and even aerial robots.

For the moment, though, the emphasis has been fully on the ground. And there can be no question this research has profound and positive implications for First Responders (and others) using robots in mission-critical situations.

Below: The Hunter SE gets put through its paces. (All images courtesy of Dr. Xiao.)

Hunter SE George Mason Xuesu Xiao



We’re tremendously impressed with the work being carried out by Dr. Xiao and his team at George Mason University. We’re also honoured to have played a small role in supplying the Hunter SE, InDro Commander, as well as occasional support as the project progressed.

“The use of robotics by First Responders is growing rapidly,” says InDro Robotics CEO Philip Reece. “Improving their ability to reach destinations safely on mission-critical deployments is extremely important work – and the data results are truly impressive.

“We are hopeful the work of Dr. Xiao and his team are adopted in future beyond research and into real-world applications. There’s clearly a need for this solution.”

If your institution or R&D facility is interested in learning more how InDro’s stable of robots (and there are many), please reach out to us here.

Blue Books offer crucial guides for First Responder RPAS programs

Blue Books offer crucial guides for First Responder RPAS programs

By Scott Simmie


There are two important tools available for First Responders who use RPAS in their work.

No, they’re not drones. Instead, they are guides for developing safe and effective RPAS programs – and for carrying out low-risk BVLOS flight in the near future. These “Blue Books” are intended for fire departments, Search and Rescue organisations – and more.

These guides came about because the Canadian Association of Fire Chiefs, the Civil Air Search and Rescue Association and the Search and Rescue Volunteer Association of Canada identified a need for clear and credible reference documents. InDro Robotics received the contract to pull these books together, under the expertise of Kate Klassen and with a generous grant from the Government of Canada’s Search and Rescue New Initiatives Fund.

Kate was an early adopter in the drone world and already had a solid background in traditional aviation. She’s a flight instructor with multi-engine and Instrument Flight Rules ratings, as well as ratings for flying at night. She loves nothing more (with the exception of her two young daughters) than poring through regulations and working with bodies like Transport Canada to help safely advance the use of drones in Canadian airspace.

In other words, she was perfect for the job.

That’s Kate, in her element, below:



These days, you’d be hard-pressed to find a First Responder organization that doesn’t have some kind of drone program. RPAS have been particularly helpful in Search and Rescue operations, including night searches using thermal sensors. Many people have been rescued quickly and safely as a result. The use of drones has also helped keep First Responders out of harm’s way. For example, it’s much safer to locate a person lost on a frozen lake with a drone and then dispatch a rescue team to precise coordinates rather than having that crew roaming around on potentially hazardous conditions.

They’re also a tremendous tool for firefighting operations. Not only do they supply immediate situational awareness that can be securely shared with decision makers down the line, but thermal sensors can also detect hot spots invisible to the naked eye. Police departments and even paramedics routinely use drones in operations. (In one example from Renfrew County, a drone was put up immediately following a tornado for damage assessment and to search for any injured people.) So drones are here to stay.



It’s not an exaggeration to say that drones have truly revolutionised the work carried out by these organizations. But it’s easy to forget that this has been a recent development.

DJI released its original Phantom drone back in 2013. At the time, it didn’t come with a camera and you had to attach a GoPro. Smart tinkerers figured out how to modify those GoPros so that the pilot could stream real-time video. Another company, Draganfly, was producing basic drones even earlier and selling them to law enforcement and other First Responders.

But drones weren’t widely known, and many of the use-cases now so common had not even yet been conceived.

A few early adopters began purchasing drones for First Responder work. It was largely trial and error, as people experimented with using drones for SAR, strategic monitoring of fires, photographing accident scenes – and more. Results started to be shared by word of mouth and at conferences. Drones were gaining traction.

Yet it wasn’t so easy to just pop up a drone in those early days. Transport Canada at the time was rightly cautious about these new devices, and pretty much any flight back then required a Special Flight Operations Certificate, even if you were flying within line of sight. Unless you managed to get a blanket SFOC, it was against the regulations to simply put a drone without that long SFOC process.



As the technology improved and the utility and safety was recognised, things began to shift. More and more First Responders started adding drones to their tool kit. And Transport Canada eventually modified (and continues to modify) its regulations to safely integrate drone operations into the national air space.

If that sounds like progress, it was. But still, there was a hitch. Organizations were creating their own ad-hoc drone operations. They were doing their best, but there was really no Best Practices guide to help inform First Responders on how to create an effective program. Yes, there was piecemeal information if you wanted to endlessly surf the internet, but there wasn’t a single repository of knowledge that could be used as a guide. What qualifications are required? What type of drone is best for the job? What scheduled maintenance is necessary and why?

And that’s how the idea for the Blue Book series came about.

Below: One of the early DJI Phantoms, with an integrated camera and gimbal system.

Canada Drone Companies


The first Blue Book was released in November of 2022 and is available for members of First Responder, Search and Rescue and Fire Departments here. Kate Klassen worked extensively with the various interested parties to ensure that the book was specifically tailored to the needs of these organizations. It quickly became the reference guide for those implementing or improving their drone operations.

“I think it prevents a lot of trial and error so that folks don’t have to learn all the lessons the hard way,” explains Klassen.

“A lot of fire departments are poorly funded, and I’m sure that goes for SAR as well. So you want to be smart with the dollars that you put towards tools like this. The guide supports making sure you’re not wasting money on poor aircraft decisions or poor personnel decisions.”

That initial Blue Book is entitled “Remotely Piloted Aircraft Program Development Guide, First Edition.” It’s a comprehensive blueprint for starting an operation from scratch, or improving an existing operation. Sections in the book include:

  • Training and certification regulations and resources
  • Airspace operations
  • Aircraft budget considerations, maintenance, payload and staffing
  • First Responder deployment

There’s much more, but you get the idea. And while it’s called the Blue Book, it’s really the gold standard of guides for First Responder operations.



The newest edition was launched last week, with Kate Klassen conducting a webinar to go over the highlights. This edition is geared toward routine, low-risk Beyond Visual Line of Sight flight. Obviously, particularly in Search and Rescue operations, being able to dispatch a drone over long distances can be critical in locating missing parties. And while Transport Canada does offer some leeway for First Responders in this regard, BVLOS is going to become more routine.

Transport Canada plans to deploy new BVLOS regulations. While SFOCs were previously required, the new rules (anticipated in 2025) will permit BVLOS flights in lower risk scenarios. Specifically, within uncontrolled airspace and outside of populated areas.

But even lower risk BVLOS is higher risk than Visual Line of Sight flights. And so Blue Book II takes a deep dive into the coming regulations. These regs include a new type of RPAS certificate required for low-risk BVLOS operations called a Level One Complex Certificate. Obtaining this certificate will require obtaining additional ground school education, as well as a more complex in-person Flight Review. Operators will have to maintain specific skillsets and recency in order to take on these BVLOS flights.

Among the contents of Blue Book II:

  • Defining BVLOS
  • Policy developments, procedures and checklists
  • Detect and Avoid, Mission Planning, Human Factors

There’s also an entire section on Specific Operational Risk Assessment (SORA), including Ground Risk Class Assessment (GRC), Air Risk Class Assessment (ARC), Tactical Mitigation Performance Requirements (TMPR) and Specific Assurance and Integrity Level (SAIL).

“This manual is a guide for preparing your RPAS program in fire or search and rescue organizations for Beyond Visual Line of Sight (BVLOS) operations,” states its introduction, co-written by CAFC President Chief Ken McMullen, SARVAC President Janelle Coultes and CASARA President Dale Krisch.

“The book is designed to be relevant to both fire departments and search and rescue (SAR) organizations, all hazard, emergency operations or fire suppression. Whether your fire department or SAR organization is expanding their use of RPAS into beyond visual line of sight (BVLOS) operations or whether it is advanced in the domain, we hope will find useful information in this manual.”

“We would like to take this opportunity to thank every member of the committee that worked on this manual and its predecessor Blue Book I which addresses the development of an RPAS program. We would also like to thank Kate Klassen at InDro Robotics who managed the process and held the pen to get the committee to their overall goal. This manual is in great part due to her substantive and process expertise.”

Although the Blue Books are specifically intended for those who are members of Search and Rescue organisations and Fire Departments, some exceptions are made for those in related First Responder fields. You can request a copy of the Blue Books at the bottom of the page here.

Below: A paramedic deploys a drone

Paramedics Use Drones


Kate Klassen has been a tremendous asset to the Canadian drone space for a decade. Her regulatory expertise and willingness to assist in shaping sound practices and policies are widely known. Her online RPAS courses have trained more than 10,000 drone pilots in Canada, and her online portal FLYY continues to help new pilots obtain their Basic and Advanced RPAS Certificates (including Flight Reviews). Kate has served as the co-chair of Transport Canada’s Drone Advisory Committee (CanaDAC), is on the board of the Aerial Evolution Association of Canada, and has previously served on the board of COPA – the Canadian Owners and Pilots Association.

“These guides were pretty labour-intensive, but I’m pleased to have worked closely with these various associations and individuals to pull together what we believe to be a Best Practices manual that truly reflects the needs of these specific organizations and use-cases,” says Klassen.

“We are also always willing to work with any company that has a drone program to produce a guide tailored specifically for their operations, ensuring consistency and safety across all operations. We are also building out specific Micro-Credential courses in areas like thermal/hyperspectral imaging, surveying, precision agriculture and more. These are highly-focused, hands-on courses that quickly bring operators up to speed on new and complex skill sets.”

In addition, InDro Robotics manages the Drone and Advanced Robot Training and Testing (DARTT) facility at Area X.O in Ottawa, which includes both classroom space and a netted drone enclosure.

If you’re interested in discussing your RPAS program needs, whether for training or a company/industry-specific manual, you can get in touch with Kate right here.

Drones playing increasing role in disaster response: CAV Canada Panel

Drones playing increasing role in disaster response: CAV Canada Panel

By Scott Simmie


In recent years, drones have proven indispensable in the field of emergency services.

They’re routinely used to assess damage following disasters, to document serious accidents and allow roads to re-open sooner, for situational awareness during firefighting operations, Search and Rescue operations – and much more.

So as we head into a future of Smart Mobility and Smart Cities, it’s fair to assume that the role of drones will continue to grow. And that was the thrust of a panel at CAV Canada in Ottawa September 28 entitled “Aerial First Responders: Drones transforming emergency services.”

Moderated by InDro Robotics CEO Philip Reece, the panel brought together experts from the world of drones, EMT, AI/Machine Learning – and more.


Philip CAV Canada Drone Panel



CAV Canada is an annual gathering devoted to the field of Connected and Autonomous Vehicles. And drones are very much a part of that sector.

Down the road, it’s anticipated that automated drone deliveries of critical supplies – including medicines and even organs for transplant – will be routine in major urban centres. The US Federal Aviation Administration is already talking about setting aside specific corridors for use by UAVs to help ensure they do not conflict with traditional crewed aircraft. So that connected, autonomous future is coming – and emergency response will be part of that world.

The panel included experts from various specialties within the drone world. Those participating were:

  • Wade MacPherson, an Advanced Care Paramedic with the County of Renfrew and drone operator
  • Sharon Rossmark, CEO of Women and Drones and a commercial aircraft pilot
  • Dr. Robin Murphy, Raytheon Professor of Computer Science and Engineering at Texas A&M University and a specialist in drones and disaster response. (Dr. Murphy was involved with deploying drones following Hurricane Katrina in New Orleans back in 2005; the first use of drones in a US disaster scenario.)
  • Jason Chow, Director of Strategy and Business Development with Elroy Air. The company is manufacturing an automated delivery aircraft that can carry 300 pounds of cargo in a quickly swappable pod
  • Mathieu Lemay, CEO and Co-Founder of and – and an authority on Artificial Intelligence and Machine Learning

Below: The panel. Philip Reece is on the far left; the other panel members appear in order above from L-R

Philip CAV Canada Drone Panel



When it comes to emergency response, there’s no question that drones are now firmly part of the tool kit. And lately, it seems, there’s no shortage of disasters.

“Unfortunately we’re seeing more and more wildfires, more earthquakes, more floods – even tornadoes,” said Reece as he kicked off the session. Paramedic Wade Macpherson said it’s routine to deploy drones in his line of work.

MacPherson said his paramedic organization has eight drones that are used regularly. They’ve been used to deliver prescription medications during floods, in Search and Rescue missions, and for situational awareness. Not only can drones gather data or deliver critical medications, said MacPherson, but they also help keep other professionals out of harm’s way. He sees great potential for their use in delivering Automated External Defibrillators, which are used to help cardiac arrest patients. Research in Renfrew County has shown that a drone can deliver an AED unit faster than a speeding paramedic vehicle.

AEDs by drone, he said “could be an enormous game-changer…time is absolutely critical.” In fact, the odds an untreated cardiac patient will survive diminish by 10 per cent each subsequent minute following the event.

Recently, said MacPherson, the Renfrew paramedics were called to assist in locating a missing Canadian Forces helicopter that had crashed. And again, drones were deployed.




Most drones deployed in emergency response situations are smaller machines – with the smallest weighing just under 250 grams. While such machines can still prove useful for Search and Rescue and situational awareness, a growing number of companies are manufacturing larger uncrewed vehicles capable of greater range and cargo. Elroy Air is one of those companies.

“Our sweet spot is 300 pounds (cargo) and 300 miles (range),” said Jason Chow. Because the Elroy Air vehicle is a fixed-wing VTOL, it takes off and lands like a helicopter – meaning it doesn’t require a runway. Its cargo pod can be rapidly switched out. Chow says carrying humanitarian supplies and disaster relief are among the use-cases for such aircraft.

“(The aircraft can carry out) Search and Rescue, monitoring wildfires,” said Chow. “But the main one for us is the cargo pods, being able to go from a supply depot and move the different kinds of supplies the firefighters need to potentially dangerous areas where you don’t want helicopters flying.”

Using drones, he says, takes the risk and cost out of the equation. Medical supplies, food, water – even fuel or batteries – can be carried in those pods.

Below: The Elroy Air Chaparral, with cargo pod


Elroy Air Chaparral

AI, Machine Learning, Autonomy


Where things get really interesting is when you start layering in enhanced capabilities such as AI, Machine Learning, and autonomous flights.

Systems such as SkyScoutAi are capable of being automatically dispatched the moment AI detects the beginning of a wildfire. Data about the location and intensity of the burn can be quickly relayed to emergency responders. In other words, there’s a human “on the loop” – rather than someone manually operating the aircraft via remote control. It’s faster, more efficient, and should lead to earlier detection and mitigation.

The Elroy Air system also involves automated flights – and the company is exploring automation for loading the cargo pods. In a natural disaster or emergency, this would also mean that critical goods get to the required destination more quickly.

“We want to be able to prepackage all the cargo into these cargo pods so that you don’t have to be there in a dangerous environment,” said Chow. “That’s what we’re thinking about, extending the capabilities and reducing risk.”

The potential for AI appeals to paramedic MacPherson. He explained that while he’s confident about his paramedic skills, he doesn’t have the same proficiency when it comes to drones. An automated flight path for search and rescue operations, he said, would be more efficient than a paramedic manually operating the craft. “I’m an expert in paramedics and ultrasound, but not at all the latest drone techniques,” he said, adding that using AI to optimise the search path would be useful.

There was agreement elsewhere on the panel.

“It’s all about getting the right information to the right person at the right time,” said Dr. Robin Murphy. “How do you get it to them?…So AI’s got a huge role to play.”




There was also recognition that emergency response requires specialised skills. In the early days, it was enough to simply know how to pilot a drone. Not anymore.

“A lot of people think it’s about learning to fly the drone,” observed Sharon Rosemark of Women and Drones.

“What’s missing is the specific applications and expertise…So really helping people understand that the drone is a tool, but within that there are other applications and other opportunities.”

Below: An InDro Wayfinder drone, which has been used in trials for prescription drug delivery to remote locations

Delivery Drone Canada



InDro has long been involved with drones (and now robots!) and emergency response. We’ve carried out prescription drug deliveries, Automated External Defibrillator trials, and even shuttled COVID test supplies for an isolated First Nations community at the peak of the crisis. We’ve seen, first-hand, just how valuable these tools can be.

“There’s no question that drones and robots have become essential tools for First Responders,” says InDro Robotics CEO Philip Reece. “It’s also pretty clear that their utility will continue to grow. AI and automation will add both to their value – and to the number of applicable use-cases. We look forward to helping to push the envelope.”

A final FYI: InDro has carried out specialised drone training for First Responders for many years. We are now able to expand that training to include ground robots at the Drone and Advanced Robotics Training and Testing facility at Area X.O in Ottawa (which also features a huge, netted enclosure for drone training and evaluation). If you’re interested, please contact us here.

Drones playing increasing role in disaster response: CAV Canada Panel

Port Coquitlam drone grant leads to new Fire and Emergency Services capabilities

By Scott Simmie


There’s no question that drones have become an essential part of the toolkit for First Responders.

Drones have proven themselves in Search and Rescue operations (including at night), for Situational Awareness in firefighting and disaster response, and as important tools in accident documentation that can allow police to more rapidly clear the scene and get traffic moving quickly again.

Now, the city of Port Coquitlam’s Fire and Emergency Services department has upped its capabilities thanks to two new drones and training – the result of a $30,000 grant from the Union of British Columbia Municipalities (UBCM). The money was earmarked as “Community Emergency Preparedness Funding.”

Below: An image from Port Coquitlam’s Fire and Emergency Services web page

Port Coquitlam Drone Grant



Drones have proven particularly useful tools to firefighters. They not only provide the Big Picture from above, but drones with thermal sensors can see beyond the visible flames – identifying other hotspots not visible to the naked eye. A section of roof that might appear fine could, in fact, be close to combustion.

On May 6, 2019, drones played a huge role at one of the worst fires in the City of Victoria’s history. What would come to be known as the Pandora Street Fire would ravage an historical buiding and take a week to fully extinguish. On the morning it broke out, there was so much roiling brown smoke that firefighters couldn’t even see where the flames were. They immediately put an InDro drone, equipped with thermal sensors, in the air.

“If you’ve ever been to one of these big fires, the smoke is thick and completely impenetrable,” explained InDro Robotics CEO Philip Reece in this story.

“You’re pointing the hose at where you think the fire is. Now you switch to thermal and it basically cuts the smoke – the smoke disappears. Now you see the heat coming up off the fire. You can actually follow it down through the different radiometric temperature colours to where the real core of the fire is.”

The image below was taken at the Pandora Street Fire and is courtesy the City of Victoria’s Fire Department. You can see, thanks to thermal, where the hottest spots are. It’s a clear example of how important an airborne thermal sensor is:


Pandora Street Fire FLIR thermal drone



The drones, purchased via InDro Robotics, are two DJI Mavic 3 Enterprise Thermal units. The camera provides up to a 56x combined optical/digital zoom, and the thermal sensor has 640 x 512 resolution. With flight times of up to 45 minutes, the pair of drones can be easily rotated for continuous situational awareness. The controller allows to displaying both visual and thermal imagery side-by-side.

“This is a great example of our city using creative technology tools to better serve and protect our community, residents and keeping our firefighters safe,” said Mayor Brad West in this news release

“Providing immediate access to real-time video footage, helps our firefighters make better on-scene decisions. We are grateful to the Union of British Columbia Municipalities (UBCM) for providing us with this grant that will positively impact our community.”



The grant also provides for training of those who will operate the drones – as well as to develop planning exercise scenarios for the City’s Emergency Operations Centre. Five Fire Department pilots currently hold their Transport Canada Advanced RPAS Certificates, and additional training with InDro Robotics will take place to in order to fully exploit the capabilities of the thermal drones and interpret the data.

The news release states that drones will be able to provide real-time information via live-streaming to the City’s Emergency Operations Center during incidents:

“A review of the current EOC practices, used to obtain information, suggests that more timely and reliable information can be obtained through the use of technology, such as drones. Using a drone to survey the site of an incident can reduce the risk of injury to first responders as well as give crucial information to the incident commander for planning response activities which can be livestreamed to the EOC.”


It goes on to outline some of the many benefits of drone use, including:

  • “Provides fast and efficient reconnaissance of the incident from a safe distance prior to sending first responders in to perform search and rescue operations;
  • “The use of drone mounted thermal imaging cameras assist first responders in identifying heat signatures of trapped or injured civilians who may not be easily seen or heard;
  • “Support City staff in pre-disaster planning efforts, e.g. geographic surveys and inspections of bridges, dams, and diking systems; and
  • “Provides staff with updated, accurate, high definition images for the City’s data collection.”

Councillor Steve Darling, the City Council’s designate for community safety matters, is quoted outlining why these drones are an important addition:

“The drone(s) will be used to support fire ground operations, relaying important information regarding fire growth and heat. This will also increase firefighter safety, allowing the department to keep an eye on firefighters working in hazardous areas.”

Below: A DJI video outlining the features of its Mavic 3 Enterprise drones




It’s been less than a decade since DJI released the original Phantom, which required a separate GoPro and was not capable of video streaming unless you really wanted to buy hobby parts and hack the camera to transmit. Drones were anomalies then, largely purchased by hobbyists.

But it wasn’t long before First Responders started seeing the potential. Some early adopters embraced the emerging technology, and it wasn’t long before word started to spread. It’s now routine, at pretty much any drone or First Responders convention, for presentations to be made showing real-world examples of how useful – critical, even – drones have become.

“The growth of drone technology has truly been exponential – and so have the use-cases,” says InDro Robotics CEO Philip Reece.

“We’ve long been involved with drone training with Port Coquitlam Fire, and applaud the Union of British Columbia Municipalities for this forward-thinking grant. We look forward to hearing about the many ways these drones benefit Port Coquitlam Fire and the City’s Emergency Operations Centre.”

InDro has, for many years, trained First Responders and supplied specialized drones for their work. If your local First Responders would like to learn more about the capabilities of InDro drones or ground robots – including training at the forthcoming Area X.O advanced drone and ground robot facility in Ottawa – feel free to contact us here



First Responders find drones invaluable tools

First Responders find drones invaluable tools

By Scott Simmie

It’s no secret that drones have become an essential tool for many First Responders.

Emergency services frequently use these devices to obtain situational awareness – also known as “The Big Picture.” Police departments deploy them to search for missing people, locate suspects, monitor protests and collect images following serious collisions in order to clear the scene more quickly. Fire departments use them to monitor fires, detect hot spots, hazardous spills and more. And paramedics? Well, they’re using them too.

In fact, paramedics in Ontario used a drone – as first reported in this story – to assist during a Search and Rescue operation on a cold winter’s night early in 2022. Specifically, it was members of the Hastings Quinte Paramedic Services based in Belleville, Ontario.

Not surprisingly, that got us interested. And so we contacted Mike Slatter, Deputy Chief of Quality and Development, to find out more. As it turns out, we’d seen Deputy Chief Slatter make a presentation about drones back in 2019 in Ottawa at the annual national convention of Unmanned Systems Canada (now the Aerial Evolution Association of Canada).

We were really eager to learn more about how his team came to use drones. And, more specifically, how it uses them in some of its day-to-day operations. We found what Mike Slatter had to say fascinating – and believe you will, as well. FYI, that’s Deputy Chief Slatter in the image below, bringing in a drone for landing.

First Responder Drones

Paramedics do more than you might realize…


We started this off with a simple question. What do paramedics do?

Deputy Chief Slatter explained that in the case of Hastings Quinte Paramedic Services, there’s much more to the job than car crashes or calls to homes and businesses. Its rural catchment area means hunting accidents or injuries on farms crop up. The paramedics also assist local fire departments, sometimes offering medical assistance to firefighters who have just emerged from the heat and smoke of an active fire.

What’s more, Canadian Forces Base Trenton is nearby, and the service responds to calls there. Slatter’s team has also worked with members of the CFB Trenton Search and Rescue team, and sometimes receives occasional calls from CFB Mountain View, an airfield which also has a parachute jumping site.

That’s not all. Come summer, the area fills up with vacationers. There are boating accidents, drownings, injuries on the beach and more. So the workload involves a lot more than car accidents.

Drones enter the picture


With the help of a federal program, the paramedic service got into the drone world in 2018. Members of the service first did online training through InDro Robotics, followed by in-person flight instruction with InDro staff.

“I was fully impressed,” says Slatter. “Philip’s team was very professional; I thought it was very reassuring that Philip is so connected on the cutting edge of what’s going on with drones and safety. The experience was invaluable.”

Since then, the Service has deployed its DJI Matrice 210 and Mavic Pro Enterprise on a variety of missions, including Search and Rescue, house fires (using FLIR thermal imaging to detect hotspots), and even at a high school lockdown for situational awareness.

But not every drone mission is a dramatic, slam-dunk with a high-profile rescue. The real utility, says Slatter, is the ability to provide First Responders with that ‘big picture’ situational awareness.

“It gives you such a different perspective as to what’s going on,” he says. “The field of vision during the day is just amazing, and the camera technology is quite useful for zooming in and looking at things more closely to determine what’s happening.”

Let’s zoom in ourselves, and take a closer look at two recent incidents involving Hastings Quinte Paramedic Services.

First Responder Drones

Friday, January 28


Someone calls 9-1-1. They think they hear someone out on the ice at the Bay of Quinte calling for help.

It was still daytime, but the ice had a thick covering of snow – which would have made searching on foot a slow and laborious task. There was also a lot of ground to potentially cover, dotted with the occasional ice fishing hut. To give you a sense of scale, most of those huts were at least two kilometres from the shore.

“The Fire Department was there with their iceboat and team,” says Slatter. “The area we were looking at probably had a radius of five kilometres.”

With excellent visibility and a drone remote control monitor designed for high visibility even on sunny days, Slatter and his colleagues could monitor a live high-resolution video feed from the drone. With a background of snow and ice, it was relatively easy to scan fairly large areas as the drone flew overhead.

Scenarios like this make the drone what’s often termed a “force multiplier” – meaning the information it was gathering was greater than a single person could have acquired on their own. It also meant the Fire Department could pull its team back from the ice to wait on shore. There was no point in slogging on foot for kilometres when the drone could do the job.

Did it find someone? No. But it also revealed that no one appeared to be in distress in the reported area. That information was valuable for all the First Responders: Resources would not be expended where they were not required.

“Essentially nobody had to go out on the ice and it saved a lot of time – taking it from being an operation that would have taken several hours to about an hour or an hour and half,” says Slatter. “We were also able to cover areas along the shore that would have been difficult to get to, as well.”

Monday, January 31


Another emergency call, this time as dusk was approaching. A person who had been searching for a runaway dog had become lost in the Sandbanks Provincial Park. The Ontario Provincial Police also received the call, and asked the paramedics if they could bring their drone. The OPP, as it turns out, had limited resources due to the protests in Ottawa. Because of that, an OPP helicopter that might normally have been put to use was unavailable.

The OPP dispatched search teams on an All-Terrain Vehicle, and suggested a location where the drone might be most helpful. The paramedics launched their Matrice into the dark sky.

The drone’s FLIR thermal sensor is designed to detect differing levels of heat on the ground: The brighter the image, the warmer the object.

Thermal cameras are incredibly useful for finding missing persons at night, when the ground is cooler than during the daytime. A human being will display a relatively bright heat signature that contrasts the ground. In this case, you can see a paramedic ATV that seats two, also known as a Side-by-Side. Slatter scanned the area, searching for a bright spot that might indicate a person.

Emergency Response Drones

The drone was flown back for a battery swap, and then it was returned to the air. An OPP K9 unit had discovered some tracks that matched the description of the boots of the missing person. They were fresh. The OPP and paramedics, each in their own ATVs, began following those tracks toward a beach area. Slatterly returned the drone to the sky and began following the searchers while monitoring a much wider area from above.

“There are lakes on two sides of the area we were in,” says Slatter. “Because there are sand dunes, with the ice buildup there’s a lot of crevices along the shoreline. So the main concern was that the person had fallen or laid down due to being tired. By being up in the sky we could see a greater view than just a single person on the ground.”

Drone Detection

As the second set of batteries became exhausted and paramedics were returning the drone, word came in: The missing person had been located elsewhere.

‘Hey’ – you might think. ‘The drone didn’t find them.’ No, it didn’t – because they weren’t in the search area. But that is *precisely* the point in this case. The drone provided accurate intelligence that the missing person was not in a location being searched.

And that is absolutely valuable information that assisted First Responders.


“(It was) Very useful,” says Slatter. “We were able to cover a larger area and  eliminate areas where we felt the person wasn’t.”

And so, in these recent two examples – both occuring within a week – paramedics dispatched drones. These cases might not grab headlines in the way a dramatic rescue might, but the drone provided valuable data. What’s more, these examples are highly illustrative of just how much a part of the daily First Responder toolkit drones are becoming.


What’s next?


Drones are clearly now part of the workflow, when required. There’s also no question that the technology continues to advance. InDro Robotics, for example, has conducted numerous trials using drones to transport Automated External Defibrillators, transporting them to the scene of a simulated cardiac arrest. Drones tend to get there significantly faster than a paramedic vehicle. InDro has also delivered critical pharmaceutical supplies, such as an EpiPen (used to treat severe allergic reactions that can prove fatal) or Narcan (Naloxone HCI nasal spray), used for opioid overdoses.

You can see an example of this kind of work here:

And the future?


With successful trials of AED deliveries and pharmaceuticals delivered Beyond Visual Line of Sight, it’s not a huge leap to envision a future where such flights are routine. Where, for example, a 9-1-1 call for cardiac arrest might simultaneously dispatch an autonomous or remotely piloted drone to the site of the call. Or where an Epipen reaches someone in respiratory distress within minutes.

It’s a future Deputy Chief Mike Slatter believes could well be on the horizon as an important tool for First Responders.

“I think we are definitely on the cusp of that happening,” he says – adding that the Hastings Quinte Paramedic Services has purchased its own small AED for its drone.

“I think the potential for a small First Aid Kit or Narcan (delivered by drone), especially in the rural areas like we have here, definitely would have benefits… I think getting that device to a person even a couple of minutes ahead of a responding ambulance or First Responder could make a difference for a person.”

Slatter also has some final words about InDro’s training.

“It was very reassuring that (CEO) Philip (Reece) is so connected on the cutting edge of what’s going on with drones and safety,” he says. “You see a lot of different companies out there advertising drone training. And it calls into question: What is the standard for a training service? And I think that’s where InDro has set the benchmark. Our program really has credibility because of the training that we did with InDro.”

InDro’s Take


InDro Robotics has both deep respect for and a proud tradition of working with First Responders. We’ve helped train and outfit paramedics, RCMP and others across Canada, building solid relationships along the way. Drones have become an indispensable tool for Emergency Services, aiding in rapid decision-making, keeping First Responders out of harm’s way – and even saving lives. With advances in drone technology and ground robotics, we’re confident these devices will become an even more essential part of their toolkit in the future.

If you are a First Responder looking to gain drone skills or upgrade the skills of your team, there are a couple of InDro options. You can gain the knowledge required for your Basic or Advanced Remotely Piloted Aircraft Certificate online through an InDro course here. We also provide in-person instruction, anywhere in the world. Please get in touch.


305, 31 Bastion Square,
Victoria, BC, V8W 1J1

P: 1-844-GOINDRO


copyright 2021 © InDro Robotics all rights reserved