InDro develops technology for UBC drone medical delivery project

InDro develops technology for UBC drone medical delivery project

By Scott Simmie

 

We’re pleased to reveal more details or our partnership with UBC on a pilot project that will deliver medical supplies to two remote communities in northern British Columbia beginning in 2026.

We first announced our involvement in this post – but InDro Robotics Founder and CEO Philip Reece unveiled more details during a recent online seminar hosted by CAN Health Network, a national partnership between healthcare organisations and private companies with a collective goal of introducing new solutions into the healthcare system while scaling those businesses.

There’s long been a disparity in access to healthcare between urban and rural or isolated communities. Residents in those remote communities often face greater barriers to accessing lab services, timely medication and diagnostic results. The sheer physical distance from more fully-equipped healthcare settings is a big part of the problem, though socioeconomic status can also play a role.

“When it comes to rural remote communities, which spans over 50 per cent of First Nation communities in BC, that means patients still face the geographic constraints in accessing their diagnostic tests, their medication, and all sorts of things that are very important to their patient journey,” Sandy Lee, Senior Project Manager on the UBC’s Faculty of Medicine Drone Transport Initiative, told the seminar.

This pilot project will assess the benefits that longer-range drone delivery can provide, along with what kinds of deliveries are most beneficial to patients. It will also be a chance for InDro to test out some new technology that will help enable safe Beyond Visual Line of Sight Flights.

Below: A screengrab during Philip Reece’s CAN Health Network presentation

InDro Beacon BVLOS

SAFE BVLOS

 

As you likely know, BVLOS stands for Beyond Visual Line of Sight – meaning the drone is operating farther than the operator can see. New Transport Canada regulations will permit routine, low-risk BVLOS flights after November 4, 2025 providing the operator holds a Level 1 Complex RPAS Certificate and all other regs are met.

In this pilot project, drones will carry supplies between Prince George and two remote locations: The Village of Fraser Lake, as well as the Stellat’en First Nation. Initially, the project will focus on transporting personal protective equipment and laboratory test swabs before expanding to include prescription medications and other supplies – including blood products.

But BVLOS, particularly the longer-range BVLOS these missions will require, is not a slam-dunk.

“We’re going to fly over some 200 kilometres of airspace,” Reece told the seminar. “It’s maybe a two or three-hour flight, and the drone will encounter all sorts of things during that flight and we need to ensure the airspace is safe. The airspace they fly in may be busy at times  – we might have helicopters or sea planes or hydro line inspections going on.”

What’s more, weather conditions might vary significantly during the course of the mission. Just because it’s good weather at the launch point doesn’t guarantee things are fine 100 km out. And so here, InDro has developed a new innovation.

 

INDRO BEACON

 

When flying BVLOS, a lot of things need to line up. The weather must be suitable for the entire route. The Command and Control link must be robust, and the mission must be planned so that terrain won’t interfere with that crucial signal. Equally important  (as the new regulations wisely outline), there must be a system to ensure there’s no conflict with traditional aviation. When the proposed mission is some 200-300 kilometres, everything possible must be done to ensure realtime situational awareness.

That’s where the new InDro Beacon comes in.

It looks a bit like a solar-powered weather station. And it is that, but also much more.

In addition to measuring wind and precipitation, each InDro Beacon contains a camera. That camera gives the Pilot-in-Command a realtime look at cloud cover and weather systems from multiple points along the route. In addition, each 5G-connected Beacon has a highly sensitive microphone to pick up the sound of any nearby traditional aircraft – firing off an immediate alert to the PiC.

“I think of Beacon as being like having multiple skilled Visual Observers along the route,” explains InDro’s Philip Reece. “It can detect and alert on any potential conflicts, as well as provide critical data on localised weather systems.”

Initial deployment on the project will likely involve five InDro Beacons. One will be at each landing zone, with several more strategically placed along the route for optimal visibility and connection. Once the viability of that planned route is thoroughly assessed, more Beacons will be placed along the route.

“This is a long-range, long-term project,” says Reece. “There have been many ambitious drone delivery BVLOS projects that have fallen to the wayside. We plan a meticulous, evidence-based trajectory that will lead to safe and routine BVLOS in even the most demanding surroundings.”

Below: The first prototype of the InDro Beacon, followed by the relevant portion of the CAN Health Network seminar

 

InDro Beacon UBC

INDRO’S TAKE

 

This isn’t our first foray into drone deliveries for medical purposes. During the peak of the pandemic, we delivered COVID19 test swab kits between a remote First Nations community in the Gulf Islands and the mainland, saving a healthcare worker from hand-carrying these by ferry on a daily basis. We have also previously partnered with Canada Post and London Drugs to demonstrate secure delivery of critical medications to island communities.

This project, however, is different. It will be an ongoing program to determine not only the benefits of drone delivery for remote and First Nation communities – but to develop a safe system for ensuring those deliveries.

“This is kind of a big deal,” says InDro Founder and CEO Philip Reece. “We plan to be very meticulous throughout, improving all of InDro Beacon’s multiple capabilities until we are absolutely satisfied. Once we reach that stage, we will be producing this commercially for the industry at large.”

Stay tuned.

InDro on the road: Four major conferences in a month

InDro on the road: Four major conferences in a month

By Scott Simmie

 

We’ve been busy.

Our Head of R&D Sales, Luke Corbeth, has been on the road – hitting up four conferences in three countries in less than a month. During that time, he’s met with potential clients, seen cutting-edge research, and even officially launched the new InDro Cortex.

It’s always a challenge, selecting which conferences to attend. But we try to be strategic, attending those which combine a chance to meet with new and existing clients while learning as much about new trends and research as possible.

For Corbeth, who has just returned from a show in the UK, it’s all about opportunities.

“Some of these conferences are truly the place to meet with people who are at the forefront of R&D and new use-case scenarios,” says Corbeth. “These people are often leveraging either our technology or tech from other manufacturers and integrators. These events are a great way to stay on top of things.”

Below: Luke at the big AUTOMATE 2025 show in Detroit

Luke Corbeth Automate

AUTOMATE 2025

 

This was the first stop on our tour.

In early May, Corbeth headed to the AUTOMATE 2025 show in Detroit – one of the premiere annual automation events. We were guests at the big Ericsson booth, where the company was highlighting its Ericsson 5G Private network, or EP5G. Large companies with smart factories and high degrees of automation are increasingly opting for private 5G networks for their security, high bandwidth and low-latency. Literally thousands of smart or embedded devices can share data in real-time on a private 5G network.

To show off the potential of private 5G, companies like Ericsson (which is the world’s largest provider of cellular network hardware) need to showcase tangible use-cases. And so Corbeth was there with Captis, a cycle-counting and precision scanning autonomous robot built for warehouse environments. InDro Robotics is the incubator of Cypher Robotics and helped do the R&D work on Captis. 

“We make private 5G sexy,” laughs Corbeth. “Captis is a prime example of a technology that effectively leverages private 5G networks.”

 

ICRA

 

Next, it was off to Atlanta for the IEEE International Conference on Robotics and Automation, or ICRA. Once again, there was plenty of automation and robotics on display, but the real emphasis at ICRA is on research. Posters and papers are a big part of the event, which draws some of the leading global researchers and thought leaders.

“ICRA is more of a forward-looking conference when compared with Automate,” explains Corbeth. “You’re really getting a peek at technologies, algorithms and use-cases that are coming down the pipeline.”

ICRA attracts a *lot* of researchers from the academic world, and a significant portion of InDro’s clients are from universities. At this event, InDro displayed its new Cortex – an exceedingly powerful module for robot integration and teleoperation – for the first time in public.

“Cortex is a platform- and sensor-agnostic brain box,” he says. “It can be attached to any platform – wheeled, tracked, quadruped, humanoid or drone. Because it’s plug and play, anyone who already has some combination of platforms and sensors can quickly build a robot around it.”

InDro also displayed its ROS2-based drone, developed by InDro for R&D use-cases. You’ll be hearing more about that in the future.

 

IDEaS

 

From Atlanta, it was back to Ottawa for the Innovation for Defence Excellence and Security (IDEaS) event. Put on by the Department of National Defence and the Canadian Air Force, there was definitely some emphasis on military applications such as Counter-UAS technology. InDro is prioritised on positive use-case scenarios, such as logistics, mapping, Search and Rescue, cargo delivery etc.

“We have really maintained our focus on drones and robots for good,” says Corbeth.

 

UK

 

And last, but not least, Luke jet-setted to the UK for the big Smart Manufacturing Expo in Birmingham. It could be described as the UK’s equivalent of Automate, with the focus on automation and robotics in the manufacturing sector. At the June 4-5 event, Corbeth was representing the Captis cycle-counting solution.

“Really, we were exploring whether potential clients in the UK are experiencing some of the same problems with cycle counting that existing clients in Canada, New Zealand and the UAE have. There was a tremendous amount of interest in Captis.”

Below: Another show, another booth for Luke Corbeth. Second photo shows Luke with senior Ericsson staff Jan Diekmann, Alan Minney and John Tomik. InDro shared the stage with Ericsson in Birmingham to discuss the future of smart factories and private 5G networks

Luke Corbeth
Luke Birmingham Ericsson Jan Diekmann, Alan Minney and John Tomik

INDRO’S TAKE

 

As mentioned, we choose conferences carefully in order to maximise our spend, exposure, and client outreach. Corbeth was able to meet with many existing clients and develop new relationships that could lead to strategic partnerships and/or sales. Perhaps most importantly, he was able to showcase Cortex, our new ROS2 R&D drone, as well as promote the Captis cycle-counting/precision scan solution.

“It’s been a very busy month for Luke and InDro Robotics,” observes InDro Founder and CEO Philip Reece. “We are very excited about both Cortex and our R&D drone and are on a trajectory to manufacture these at scale later this year. We’re pleased to see the level of interest in these products – and have no doubt the investment we’ve made in attending these events will pay off.”

Interested in learning more about either of those products? You can get in touch with Luke (who may still be jet-lagged) right here.

InDro Forge: A one-stop shop for prototype development and limited production runs

InDro Forge: A one-stop shop for prototype development and limited production runs

By Scott Simmie

 

It’s been some time since we’ve written about InDro Forge. That’s our custom prototype fabrication and limited production run facility in Ottawa.

We’ve been running the facility since September of 2023 – and have grown its capacity significantly since then. We’ve added new staff, capital expenditures, and have fine-tuned a workflow to ensure speed without sacrificing quality control.

“InDro Forge is the hardware hub of InDro Robotics,” explains Forge Production Engineer Joel Koscielski. “So it’s the space where we design, develop, prototype and produce the hardware that goes into InDro products as well as our client’s products.”

And, with designers and engineers and fabrication specialists, Forge ensures clients leave with a polished, finished product.

Below: The water jet table – one of many additive and subtractive tools at InDro Forge

ADDITIVE, SUBTRACTIVE TOOLS

 

You can think of InDro Forge as a small-scale factory. And it’s loaded with the tools required for that job, ranging from a state-of-the-art CNC machine and water jet table through to a variety of 3D printing devices – including the BigRep ONE, capable of printing objects up to one cubic meter in size with a variety of materials.

All of these tools, broadly, belong to one of two categories: Additive or subtractive.

“Subtractive tooling, as it implies, is about taking away material,” explains Koscielski. “If you think about something like a beautiful stone carving, or you a wood carving that’s been carved with a chainsaw to make a beautiful piece of art – those are subtractive processes.”

And additive?

“That’s really about working with a liquid material or powder, adding layer by layer, to build in what’s commonly known as 3D printing. We have about six different types of printers here that work with multiple materials depending on the accuracy we need on the surface finish.”

 

IN-HOUSE EXPERTISE

 

InDro Forge has a cross-disciplinary team, ensuring complementary skillsets. We have experienced robotics engineers, designers, electronics specialists and more to ensure our client’s plans evolve into a functioning, real-world product. We’re proud of the final fit and finish of everything that goes out the door.

We’re also cognisant that, on rare occasions, unusual requirements can pop up that stretch even our considerable expertise and fabrication resources. There, InDro Forge has access to the InDro Robotics engineering team at Area X.O, as well as contacts with external specialists in virtually every related sector.

“We have a well-filled Rolodex – though that’s a bit of a dated term – of people we can reach out to when our expert isn’t enough,” says Koscielski. “We know who to ask to be able to make sure that we can find the best solution for the problem we’re facing.”

Below: In addition to products for clients, InDro’s robots like Sentinel now go through final integration and assembly at InDro Forge

 
Industrial Inspection Robot

INDRO’S TAKE

 

We launched InDro Forge in September of 2023 with a small but strong core staff. Since then, we’ve expanded that team significantly with strategic hires aimed at maximising not only Forge’s overall expertise – but its capacity for handling multiple projects, including limited production runs.

“InDro Forge has truly been the perfect match for our Area X.O operations – as well as new clients,” says InDro Robotics Founder and CEO Philip Reece. “With the ability to leverage the expertise of our broader engineering R&D team, Forge has an immense amount of expertise at its fingertips.”

Interested in learning more? Contact InDro Forge here.

InDro in Atlanta at ICRA – IEEE International Conference on Robotics and Automation

InDro in Atlanta at ICRA – IEEE International Conference on Robotics and Automation

By Scott Simmie

 

We are at ICRA 2025 – billed as “the premiere conference in robotics and automation.”

With about 40,000 attendees, there are some conferences out there that are even larger. But few are more influential when it comes to R&D. Some 3,000 research papers have been submitted for the show, with massive poster displays showing off cutting-edge research and new use-cases.

InDro is represented at this show by our Head of R&D Sales, Luke Corbeth. We spoke with Luke about why this conference is so important in this edition of our Sound Byte micro-podcast.

PAPERS, POSTERS, BREAKTHROUGHS

 

All of that research may not be as immediately appealing as the latest humanoid robot, but some of it might well improve the next generation of humanoids or reveal new use-cases. Research unveiled at shows like these – and particularly at ICRA – often finds a pathway from R&D into real-world applications..

“It’s really about creating that knowledge transfer,” explains Corbeth. “Others can build on top of what was discovered instead of having to do that work over again. And, that ultimately lays the groundwork (not only) for improvement in our field but also collaboration as well between academia, industry and others.”

And while Corbeth will be checking out the poster presentations (and robots!) when he has a moment to slip away from the booth, most of his time will be spent talking with potential clients about recent InDro innovations.

Those on display at the show include InDro Controller – our user-friendly interface for remote teleoperations and autonomous missions. Controller is the result of an immense amount of Front and Back-End development. It allows for the rapid plotting of repeatable autonomous missions with a few clicks of a mouse. Actions, such as zooming in on a point of interest or scanning a particular item for thermal anomalies, can be set up in a flash. And the software immediately detects any new sensors added to a robot (or drone) and allows for a fully customisable dashboard to display and save the data they acquire.

We’re also showing off our new R&D research drone. We developed this product, which runs on ROS2, over the past two years. Because it’s fully Open Source and has powerful onboard compute, it’s the perfect tool for researchers who want to test new applications and code. There are very few drones that have been developed specifically for R&D purposes, so we’re pleased to be offering this (and have already sold units to US researchers).

 

THE BIG REVEAL

 

We’re most excited, however, to be showing our new Cortex module in public for the first time.

“It’s a brain box for virtually any robot or drone,” says Corbeth. “So the idea behind Cortex is it’s extremely lightweight. It has really capable compute in the (NVIDIA) Orin NX in addition to 5G connectivity and power distribution. So we can turn virtually any Uncrewed Ground Vehicle or Uncrewed Aerial Vehicle into a robot capable of teleoperation and autonomy with a little bit of software and some sensor integrations.”

We’re not releasing full specs yet, but we’re incredibly excited about the capabilities offered by Cortex. It allows not only for remote teleoperation, but for the near-instant integration of additional sensors on UGVs and UAVs without all the coding. We can also bundle Cortex with additional software stacks like InDro Autonomy. And, of course, it plays nice with InDro Controller.

If you follow InDro, you’ll be aware we previously developed the popular InDro Commander, which carries out similar functions. Cortex is the logical descendant of that R&D, putting even greater power into the smallest package possible.

Though commercial release is scheduled for later this year, we’ve already had inquiries and pre-orders. Here’s a peek at Cortex on display at ICRA 2025:

InDro Cortex ICRA 2025

INDRO’S TAKE

 

We choose our conferences carefully. ICRA is truly at the centre of cutting-edge R&D and is a must-attend for us. Not only is it a great opportunity to expand our client base, but also a chance to see the latest and best research in the sector.

The show has come a long way since we were last here,” says Corbeth. “There has been an incredible amount of innovation in such a short period from the companies that exhibit and the researchers that are presenting. Notably, a lot of advancement in humanoids, grippers and solutions like Cortex that make it easier to develop, create and deploy robotics systems.”

Interested in more information about Cortex? You can hit us up here.

InDro, UBC partner on medical drone deliveries to remote communities

InDro, UBC partner on medical drone deliveries to remote communities

By Scott Simmie

 

InDro Robotics is pleased to partner with the University of British Columbia on a pilot project that will use drones to deliver critical medical supplies to remote communities in that province.

It’s a use-case InDro has long supported. In fact, during previous trials we have securely delivered prescription medications to Gulf Islands in conjunction with Canada Post and London Drugs. It was Canada’s first-ever BVLOS RPAS delivery of its kind. That, however, was a short-term demonstration. The UBC partnership is long-term and has broader goals.

“There are multiple aspects to this project,” explains InDro Robotics Founder and CEO Philip Reece. “In addition to delivering critical medical supplies, we’ll be evaluating what kinds of cargo can be delivered, how drones perform in year-round weather, and ultimately how beneficial this service is for communities and local health-care providers.”

Initially, the project will focus on transporting personal protective and laboratory test swabs before expanding to include prescription medications and other supplies – including blood products. InDro has expertise in this field as well, carrying out trials in Montreal in 2019 to deliver simulated blood products by drone between hospitals. The work required strict temperature controls to ensure viability.

All of this is very much up our alley. In fact, InDro carried out deliveries of COVID test supplies during the height of the pandemic to a remote First Nations community:

LOGICAL, EFFICIENT

 

You don’t need to look very hard to find examples of where drone delivery of medical supplies has been hugely successful. The most well-known is Zipline, which has logged more than 100 million miles (160M km) delivering vaccines, blood products and other medical supplies in Africa and has recently expanded into some US locations.

The philosophy here is simple: It’s much faster and more efficient to move products to patients – rather than vice-versa.

“For generations, we’ve had a medical system where we tend to move patients to resources, as opposed to resources to patients,” explains Dr. John Pawlovich, the Rural Doctors’ UBC Chair on Rural Health, in this UBC post on the project.

“It’s the same problem around rural Canada and around the world—resources that patients need are either in short supply or they don’t exist in rural, remote or Indigenous communities.”

Dr. Pawlovich and his team are working closely with the Village of Fraser Lake, located west of Prince George, as well as with the Stellat’en First Nation. Both of these qualify as isolated communities, where it’s not always easy to get critical supplies quickly.

“Based on the isolated location of our community and the needs of our residents, drone transport may enhance our access to COVID-19 testing and medication without travelling and endangering other members of our community,” says Chief Robert Michell of the Stellat’en First Nation.

 

NOT JUST PATIENTS

 

It’s not simply about making things easier for patients. As we learned with shuttling COVID test supplies to and from Penelakut Island, it can also help healthcare providers. In that example, it meant a community clinic worker no longer had to pick up and deliver these supplies in person – a nearly full-day endeavour that took them away from helping patients in their community. Instead, in coordination with InDro Ops, they simply loaded or unloaded a drone that landed outside their clinic.

And, says Dr. Pawlovich, there’s no question the selected communities could benefit from a boost in healthcare access.

“Residents of rural, remote and Indigenous communities face much greater health-care disparities than other residents of BC,” he says. The UBC article states that life expectancy is lower and that people in these communities have reduced access to specialty care, imaging and laboratory investigations.

“These inequities predate COVID-19. They’ve been amplified during the pandemic and continue to exist. We’re looking at how technology can start to shrink and close that inequity gap.”

Below: Stellat’en First Nation, which is close to the Village of Fraser Lake. The drone deliveries will be coming from Prince George.

UBC Drone Delivery Village of Fraser Lake

INDRO’S TAKE

 

This isn’t our first foray into the world of healthcare and drone delivery. But it is our first long-term project in the field.

“There’s a lot we’re going to learn with this research,” says InDro Robotics Founder and CEO Philip Reece. “As it progresses, we hope to expand the range and payload of these missions to best benefit patients and healthcare providers. Over time, it’s our hope to be able to respond even to emergencies, getting supplies to those who need them most in a timely fashion.”

Flights for the new project will commence in 2026 – and we’ll be sure to update you!

How remote inspection robots reduce downtime

How remote inspection robots reduce downtime

By Scott Simmie

 

Inspection robots aren’t cheap.

We fully acknowledge that might not be the best opening pitch, but hear us out.

While a capable inspection robot can be costly, so is downtime. So is dispatching human beings to distant locations. Electrical substations and certain oil and gas assets are often remote and require many hours of driving to reach – plus the cost of hotels and per diems. Sometimes, companies even have to charter a helicopter just to place eyes on those remote spots. Depending on the sector, these inspections might take place monthly, bi-weekly – or at some other interval.

Point is: Regular inspection of remote assets is an absolute necessity. An inspection can troubleshoot for regular wear and tear, thermal anomalies, damage from animals, vandalism, environmental impact, leaks – the list goes on. A human being (often equipped with handheld scanners and other detection equipment) can generally spot all these things.

But so, too, can a robot. And, unlike a human being when it comes to remote assets, an autonomous robotic inspector can be on the site 24/7. It never requests a hotel room, doesn’t charge overtime – and never forgets to do everything it’s been instructed to carry out.

Below: The InDro Robotics Sentinel, at an electrical substation in Ottawa

Sentinel enclosure Ottawa Hydro

DOWNTIME

 

There are two types of downtime: Planned and unplanned. The former, obviously, is pre-arranged. Maybe it’s time to replace certain pieces of equipment or do other scheduled maintenance. Planned downtime can include hardware and software upgrades, even large-scale replacements. For those companies in service provision, including those in the B2B space, a scheduled event minimises downtime because everything is lined up in advance for the necessary task. In addition, you can notify consumers or clients that the service or commodity will be temporarily unavailable – and schedule the downtime to minimise disruption. Customers and clients generally understand these inconveniences when they know about them ahead of time.

Then there’s that other kind of downtime: Unplanned. Something goes wrong and you need to scramble to fix it. Precisely because these are unexpected, you might not have the required widgets or personnel on-hand (or on-site). And it’s not just the repair itself. There’s usually lost revenue, reputational damage, and even more:

“The repercussions of unplanned downtime extend beyond immediate financial losses,” explains this overview.

“Companies may face financial penalties and legal liabilities, especially if downtime leads to non-compliance with regulatory requirements. These penalties can add another layer of financial strain on top of the already significant downtime costs.”

We’ve all heard stories about airlines being fined, sometimes heavily, for unexpected delays. And the reputational damage? You wouldn’t have to look hard to find consumers who have switched airlines, internet providers and more due to unplanned downtime that inconvenienced them.

That same article dips into the oil and gas sector, using data from a 2016 study by Kimberlite (a research company specialising in the sector) which found offshore organisations face an average of $38M US annually in costs from unplanned downtime. Those with the worst records racked up yearly tabs close to $90M US. So clearly, it’s something most would like to avoid.

 

THE ADVANTAGES OF INSPECTION

 

Regular robotic inspection can help reduce unplanned downtime by identifying potential failures before they happen. Is a key component starting to age? Has wildlife encroached on sensitive components? Did the storm that passed through overnight have an impact on anything? Are all gauges reading as they should? Are there any thermal anomalies? Is there the molecular presence of hydrocarbons or other indicators above a safe threshold? Are there any strange new noises, such as arcing or humming?

Yes. People can do this when they’re dispatched. But a robot tailored for inspection – and they can be customised for every client’s needs – can carry out these same tasks reliably, repeatedly, and on schedule.

This idea of predictive maintenance is very much a pillar in the world of Industry 4.0, or 4IR (which we recently explored in some detail). As companies move into this next phase, particularly in the manufacturing sector, Smart Devices are being integrated in every conceivable location across newer factory floors. In conjunction with software, they keep an eye on critical components, identifying potential problems before they occur. Industry leaders in this space, such as Siemens, state these systems can result in up to a 50 per cent reduction in unplanned downtime, and up to a 40 per cent reduction in maintenance costs.

That’s the gold standard. But we are just at the cusp of this integration, and it’s more broadly targeted at the manufacturing sector. Those remote electrical substations and oil assets are still, in many ways, not that smart when it comes to asset intelligence and will require regular inspection for many years to come.

Below: InDro’s Sentinel inspection robot, which can be customised for any inspection scenario, It’s seen here at a demo for Ottawa Hydro

Sentinel enclosure Ottawa Hydro

THE SENTINEL SOLUTION

 

Sentinel is our flagship inspection robot. Our first iteration was in 2022 and – as with all InDro innovations – we have continued to enhance its capabilities. As new advances in sensors and compute have emerged, so too have Sentinel’s powers. But Sentinel’s evolution goes far beyond adding new LiDAR, depth cameras or processors. In the background at Area X.O, we are continuously improving our own IP. Specifically, our InDro Autonomy and InDro Controller software.

InDro Controller is a desktop-based interface with Sentinel (or any other ROS-based robot). Fully customisable and easy to use, it allows our clients to plan and monitor missions with ease. A few clicks allows users to set up repeatable points of interest where the robot will carry our specific inspection tasks. Need eyes on a critical gauge? Have InDro Controller stop Sentinel at a particular spot. Use the 30X optical Pan-Tilt-Zoom camera to frame and capture the shot. Happy with the results? Great. InDro Controller will remember and carry out this step (and as many others as you’d like) when it next carries out the mission. Collisions won’t be an issue, as InDro Autonomy’s detect and avoid capabilities ensure there won’t be any mishaps on the way. In fact, you could drop Sentinel in a completely unfamiliar setting littered with obstacles, and it could map that site and even produce a precision scan. And, like a regular visit to the robot doctor, InDro Controller also monitors the overall system health of any integrated device.

From the outset, Sentinel has been on a continuous journey pushing the R&D envelope, with testing and rigorous third-party evaluation. An earlier iteration was even put through demanding tests by the US Electric Power Research Association (EPRI) at its test facility in Massachusetts. All of these deployments have resulted in learnings that have been incorporated into our latest version of Sentinel.

 

SET AND FORGET

 

When it comes to remote assets, our clients clearly needed a hands-off approach. That meant we had to incorporate some sort of autonomous charging, since there’s no one on these sites to plug it in. We evaluated mechanical docking systems, but realised these physical mechanisms introduce another potential point of failure.

And so we ultimately settled on a powerful wireless charging system. Using optical codes, Sentinel returns to a housed structure following its missions. It then positions itself snugly up to the wireless charging system so that it’s ready for the next deployment (you’ll see a picture of one of our earlier test structures in a few seconds). We needed to avoid metal to ensure the cleanest possible wireless communication (Sentinel operates over 5G and also has the option for WiFi). Housing Sentinel when it’s off-duty protects it from unnecessary exposure to the elements, though it’s certainly built to operate in virtually anything Mother Nature can throw at it (short of a hurricane).

Finally, Sentinel also has InDro Commander on board. In addition to housing its powerful brain, Commander allows for the easy addition of additional sensors by simply plugging them in. It provides both power and a data pipeline, and InDro Controller has been built to instantly recognise the addition of any new sensors. In other words, if a client’s requirements change and a new sensor is required, Sentinel can be modified with relative ease and no new coding.

Below: Sentinel, following a demonstration for Ottawa Hydro, snugs up to charge

Sentinel enclosure Ottawa Hydro

THE SENTINEL EVOLUTION

 

As mentioned, Sentinel has gone through a ton of testing, coding and development to reach its current iteration. We’ve taken literally all of our learnings and client feedback and put them into this robot. Sentinel does the job reliably and repeatedly, capturing actionable data intended to reduce downtime for our clients. What’s more, we have moved past the phase of producing these robots as one-offs when demand arises. With our fabrication facility InDro Forge, we are now commencing to manufacture Sentinel at scale.

“Sentinel is now a fully mature and market-ready product,” says InDro Founder and CEO Philip Reece. “We already have multiple Sentinels on the ground for a major US utility client and have other orders pending. We – like our clients – are confident Sentinel is worth the investment by reducing downtime and saving companies the expense and time of sending people to these remote locations for inspection work.”

Interested in learning more, or even taking the controls for a remote demonstration of Sentinel and InDro Controller? Contact us here.