YOW drone detection program featured in WINGS magazine

YOW drone detection program featured in WINGS magazine

The Drone Detection Pilot Project being carried out at the Ottawa International Airport has received some traction in WINGS Magazine, Canada’s leading online and print publication about the aviation world.

InDro Robotics is one of the partners in the project at YOW, supplying hardware and software used to detect drones that might pose a threat to passenger, private and cargo aircraft using the airport. The program has gathered a lot of valuable data since it began in the fall of 2019.

But what it gathered during the anti-vaccine mandate protests in Ottawa in February of 2022 really raised some eyebrows. Drones were detected flying in a restricted flight zone over Parliament Hill and elsewhere in the downtown Ottawa core, with a spike during police operations to clear the protests.

A total of 27 different drones carried out 59 flights over a period of four days. Of those, 25 flights exceeded 400’ above ground level (Transport Canada’s limit, except in special circumstances). Eleven flights took place during hours of darkness – though that’s not a violation of regulations providing the drone is using lights that allow the pilot to maintain Visual Line of Sight and orientation.

Nonetheless, these flights all took place in restricted airspace. A small number were carried out by law enforcement, but the vast majority were not. As you’ll see in the following graphic, 15 unique drone IDs were detected, and 25 of the 59 flights were carried out above 400 feet (including one at 1583′ AGL).

Drone Detection

Wake-up call

 

Our initial story about this caused quite a stir, including this article in the Ottawa Citizen – along with attention from Canadian airports that do not currently have drone detection programs. And now, WINGS Magazine has picked it up.

The article appears in the May/June Digital Edition, which is also a print edition.

Drone detection

Drone detection, made simple

 

The system in place at YOW includes a micro-Doppler radar, capable of detecting the movement of small drone propellors at close range. It also features a sophisticated antennae array, which has been picking up flights as far as 40-50 kilometres from the airport.

The system is automated – and the data is banked. If a drone poses an immediate threat to a flight path, an alert is sounded and airport authorities can quickly respond.

You can read the story that appears in WINGS Magazine here. We’d also like to thank editor Jon Robinson for picking this up.

InDro’s take

 

We’ve pleased to be an integral part of the YOW Drone Detection Pilot Project. The results have been greater than we all anticipated, with highly granular data that has helped YOW educate drone pilots and also prepare an airport protocol for those rare but critical occasions when RPAS flights have the potential to impinge on the safety of crewed aircraft. The system provides enough advance warning that aircraft pilots can be given a heads-up and instructions to minimise any conflict with drones; the system is also capable of identifying the location of the RPAS pilot.

Monthly data is shared with program partners and has generated interest from other Canadian airports. The data detected during the Ottawa protests has also attracted the interest of those responsible for the safety of Parliament Hill and other critical buildings in the downtown Ottawa core.

For more information on how a drone detection system might benefit your airport or critical infrastructure, please don’t hesitate to contact us here.

InDro Robotics, Rogers make first drone / RPAS flight in Canada using 5G network

InDro Robotics, Rogers make first drone / RPAS flight in Canada using 5G network

InDro Robotics has flown two drone missions utilizing a Rogers 5G network – another important Canadian first. The flights took place at the University of British Columbia (UBC) in April, 2021. 

This milestone demonstrated potential future applications of 5G-enabled autonomous flights in Canada and around the world.

The two UAVs, both manufactured and operated by InDro Robotics, were standard quad models integrated with a 5G transmitter/receiver. The RPAS units used the Rogers 5G network at UBC to perform various tasks during test flights.

InDro flies drone missions over Rogers 5G network

The 5G network was installed by Rogers as part of a three-year, multimillion dollar partnership with UBC. The goal is to build a real-world 5G hub on campus that will be the blueprint for 5G innovation and research in Canada.

Drones generally communicate using standard radio frequencies. These have limited range and data bandwidth. Flying drones over the Rogers 5G network, InDro Robotics can share videos and even dense data with multiple users anywhere on the network at a much faster rate.

Rogers 5G Drone
Rogers 5G Drone

The InDro Robotics mission flying drones over 5G networks

The drone flights, carried out by InDro Robotics over a Rogers 5G network, were highly successful. The drones completed tasks such as picking up and dropping off a box containing first-aid medical supplies from one location to another. 

InDro Robotics President and CEO, Philip Reece, said the ability to fly utilizing a 5G network opens up more opportunities for new uses for UAV technology, such as deployment during natural disasters and critical incidents. The use of 5G allows sharing data with multiple users. More importantly, it enables the operation of UAVs from off-site command centres that could be hundreds or thousands of kilometres away from the mission. 

Two greatly anticipated technologies that have developed over the past years are commercial drones and 5G networks. On their own each have an amazing impact on many industries. Together, they do so much more. We now have drones flying over public and private 5G networks that can collect and send data into the cloud for AI processing and back to offsite command centres with near-zero latency. This enables drones to operate smarter and safer, sharing critical data with those that need it instantly. This helps keep First Responders out of harm’s way, and allows engineers to inspect infrastructure faster and more efficiently. It also helps keep airspace safe, and so much more,” said Reece.

We are proud to be leading the industry in deploying drones over cellular networks in North America.”

InDro Robotics delivers COVID-19 tests by drone in B.C.

InDro Robotics delivers COVID-19 tests by drone in B.C.

Throughout 2020, healthcare providers of Penelakut Island in British Columbia, Canada, were challenged with a very difficult situation. 

Due to the COVID-19 pandemic, a single ferry boat was accessible between the island and the nearest medical lab located in Chemainus on Vancouver Island, putting the timely transport of samples at risk. 

The process of getting the supplies to the lab took hours to complete, and one of the island’s three nurses had to travel with the supplies, making them unavailable to provide health services during the day.

InDro Robotics was tasked by the Island to begin deploying a Unmanned Aerial Vehicles (UAVs), or drone, to expedite the transportation of COVID-19 tests,

To start evaluating this problem, the team at InDro Robotics worked alongside Penelakut Island’s residents in strategizing a plan to fly samples using specialized drones and navigation software. Penelakut Island is currently home to over 1,000 people from the Penelakut First Nations community.

While InDro Robotics had the technology to fly between both islands, connection latency became a key issue during the trials.

Often drones are equipped with satellite connectivity solutions to accommodate the real-time video streaming needed to enable Beyond Visual Line of Sight (BVLOS) operation of UAVs (Unmanned Aerial Vehicles). However, according to Philip Reece, President and CEO of InDro Robotics, satellite is hindered by as much as 7 seconds of latency, which is way too much to provide safe operations for BVLOS.

Transport Canada also requires companies to use technology features that track signal

strength during a UAV’s journey. This meant that any solution chosen by InDro Robotics would need to support such features while integrating their proprietary flight navigation software.

As a solution for the constant high-performance connectivity needed for its drones, InDro Robotics deployed Cradlepoint’s NetCloud Service for Mobile, with the Advanced Plan, and wireless edge routers built for in-vehicle use. NetCloud’s cellular signal monitoring and thermal mapping features would allow InDro Robotics to optimize performance and safety during the drones’ route.

Using Cradlepoint’s NetCloud API, InDro Robotics was able to pull GPS-based cellular health information into the company’s flight navigation systems.

These endpoints also leveraged LTE service, provided by Rogers, instead of satellite connectivity, which carries too much latency for the real-time video streaming necessary on these flights.

The cloud-managed cellular connectivity would ensure that the low-latency video streaming can be essential to successful drone flights, and the map-based performance analytics can still be necessary to optimize flight patterns while meeting Canadian drone regulations.

“Using an enterprise-grade router on our drones allows us to stream video well from two on-board cameras along with full command and control, which is essential as we continue to expand our UAV products and services,” said Reece.

InDro Robotics also used NetCloud’s GeoView suite of location-based features forregulatory requirements. This was used to save time and money during the project, as InDro Robotics was able to track cellular health analytics and identify “dead zones” on a heat map during several test flights in various weather conditions on various routes. This lead to evidence-based decisions about the best possible flight paths to and from the island for its UAVs.

 

Fortunately for residents of Penelakut Island, these LTE enabled drones can mean medical supplies and COVID-19 tests will be swiftly transported in a shorter time-frame. This also meant that local medical professionals could offer more time to serve their patients on the island.

 

END NOTES

 

InDro Robotics is a leader in drones, or  Unmanned Aerial Vehicles (UAVs), as well as the first North American company to develop beyond visual line of site (BVLOS) technology with regulatory approval for emergency and first responder missions. InDro Robotics has accumulated thousands of flight hours and has collaborated with leading agencies such as Transport Canada, Canadian Space Agency, and NASA.

InDro Robotics inspects transmission power lines on private LTE network with NYPA and Nokia

InDro Robotics inspects transmission power lines on private LTE network with NYPA and Nokia

In partnership with Nokia and the New York Power Authority (NYPA), InDro Robotics ran a highly successful demonstration with Unmanned Aerial Vehicles (UAV), or drones, that were installed with private LTE wireless technology. 

 

The first-of-its-kind, InDro Robotics’ drone inspection with NYPA – one of the United States’ largest state public power organizations – exhibited the ability to control onboard high definition and thermal imaging devices during inspections within close proximity of in-service transmission lines. 

 

InDro Robotics’ was chosen for this project due to their extensive expertise in operating UAV’s in unprecedented ways when NYPA was scouting out drones for transmission line inspection.

These test flights were also aimed at assisting the NYPA, and possibly other corporations, to safely inspect miles of transmission lines using wireless networks to convey images and data.

Within the visual line of sight and fully compliant with FAA rules and regulations, the drone flights took place in December 2020 at NYPA’s Blenheim-Gilboa Pumped Storage Power Project in Schoharie County, New York. 

 The test flights were part of the NYPA pilot program, which began when the NYPA partnered with Nokia of America Corporation to pilot private wireless LTE technology. Using Nokia’s Digital Automation Cloud platform, NYPA is hoping to build a secure and reliable network that would enhance operational and programmatic benefits. Once this network is finalized, NYPA expects to petition the Federal Aviation Administration for permission to fly drones beyond visual line of sight (BVLOS) to make their inspections of transmission lines easier.

In using the LTE wireless network system for inspections, NYPA is looking to adopt the network in other areas. This includes workforce mobility applications (voice-over LTE), 30x optimal zoom camera, deep metering services and data of customer energy consumption, Wi-Fi telephony and Push-to-Talk (PTT) applications, as well as data transport that would support NYPA energy efficiency initiatives.