InDro Forge: A one-stop shop for prototype development and limited production runs

InDro Forge: A one-stop shop for prototype development and limited production runs

By Scott Simmie

 

It’s been some time since we’ve written about InDro Forge. That’s our custom prototype fabrication and limited production run facility in Ottawa.

We’ve been running the facility since September of 2023 – and have grown its capacity significantly since then. We’ve added new staff, capital expenditures, and have fine-tuned a workflow to ensure speed without sacrificing quality control.

“InDro Forge is the hardware hub of InDro Robotics,” explains Forge Production Engineer Joel Koscielski. “So it’s the space where we design, develop, prototype and produce the hardware that goes into InDro products as well as our client’s products.”

And, with designers and engineers and fabrication specialists, Forge ensures clients leave with a polished, finished product.

Below: The water jet table – one of many additive and subtractive tools at InDro Forge

ADDITIVE, SUBTRACTIVE TOOLS

 

You can think of InDro Forge as a small-scale factory. And it’s loaded with the tools required for that job, ranging from a state-of-the-art CNC machine and water jet table through to a variety of 3D printing devices – including the BigRep ONE, capable of printing objects up to one cubic meter in size with a variety of materials.

All of these tools, broadly, belong to one of two categories: Additive or subtractive.

“Subtractive tooling, as it implies, is about taking away material,” explains Koscielski. “If you think about something like a beautiful stone carving, or you a wood carving that’s been carved with a chainsaw to make a beautiful piece of art – those are subtractive processes.”

And additive?

“That’s really about working with a liquid material or powder, adding layer by layer, to build in what’s commonly known as 3D printing. We have about six different types of printers here that work with multiple materials depending on the accuracy we need on the surface finish.”

 

IN-HOUSE EXPERTISE

 

InDro Forge has a cross-disciplinary team, ensuring complementary skillsets. We have experienced robotics engineers, designers, electronics specialists and more to ensure our client’s plans evolve into a functioning, real-world product. We’re proud of the final fit and finish of everything that goes out the door.

We’re also cognisant that, on rare occasions, unusual requirements can pop up that stretch even our considerable expertise and fabrication resources. There, InDro Forge has access to the InDro Robotics engineering team at Area X.O, as well as contacts with external specialists in virtually every related sector.

“We have a well-filled Rolodex – though that’s a bit of a dated term – of people we can reach out to when our expert isn’t enough,” says Koscielski. “We know who to ask to be able to make sure that we can find the best solution for the problem we’re facing.”

Below: In addition to products for clients, InDro’s robots like Sentinel now go through final integration and assembly at InDro Forge

 
Industrial Inspection Robot

INDRO’S TAKE

 

We launched InDro Forge in September of 2023 with a small but strong core staff. Since then, we’ve expanded that team significantly with strategic hires aimed at maximising not only Forge’s overall expertise – but its capacity for handling multiple projects, including limited production runs.

“InDro Forge has truly been the perfect match for our Area X.O operations – as well as new clients,” says InDro Robotics Founder and CEO Philip Reece. “With the ability to leverage the expertise of our broader engineering R&D team, Forge has an immense amount of expertise at its fingertips.”

Interested in learning more? Contact InDro Forge here.

InDro in Atlanta at ICRA – IEEE International Conference on Robotics and Automation

InDro in Atlanta at ICRA – IEEE International Conference on Robotics and Automation

By Scott Simmie

 

We are at ICRA 2025 – billed as “the premiere conference in robotics and automation.”

With about 40,000 attendees, there are some conferences out there that are even larger. But few are more influential when it comes to R&D. Some 3,000 research papers have been submitted for the show, with massive poster displays showing off cutting-edge research and new use-cases.

InDro is represented at this show by our Head of R&D Sales, Luke Corbeth. We spoke with Luke about why this conference is so important in this edition of our Sound Byte micro-podcast.

PAPERS, POSTERS, BREAKTHROUGHS

 

All of that research may not be as immediately appealing as the latest humanoid robot, but some of it might well improve the next generation of humanoids or reveal new use-cases. Research unveiled at shows like these – and particularly at ICRA – often finds a pathway from R&D into real-world applications..

“It’s really about creating that knowledge transfer,” explains Corbeth. “Others can build on top of what was discovered instead of having to do that work over again. And, that ultimately lays the groundwork (not only) for improvement in our field but also collaboration as well between academia, industry and others.”

And while Corbeth will be checking out the poster presentations (and robots!) when he has a moment to slip away from the booth, most of his time will be spent talking with potential clients about recent InDro innovations.

Those on display at the show include InDro Controller – our user-friendly interface for remote teleoperations and autonomous missions. Controller is the result of an immense amount of Front and Back-End development. It allows for the rapid plotting of repeatable autonomous missions with a few clicks of a mouse. Actions, such as zooming in on a point of interest or scanning a particular item for thermal anomalies, can be set up in a flash. And the software immediately detects any new sensors added to a robot (or drone) and allows for a fully customisable dashboard to display and save the data they acquire.

We’re also showing off our new R&D research drone. We developed this product, which runs on ROS2, over the past two years. Because it’s fully Open Source and has powerful onboard compute, it’s the perfect tool for researchers who want to test new applications and code. There are very few drones that have been developed specifically for R&D purposes, so we’re pleased to be offering this (and have already sold units to US researchers).

 

THE BIG REVEAL

 

We’re most excited, however, to be showing our new Cortex module in public for the first time.

“It’s a brain box for virtually any robot or drone,” says Corbeth. “So the idea behind Cortex is it’s extremely lightweight. It has really capable compute in the (NVIDIA) Orin NX in addition to 5G connectivity and power distribution. So we can turn virtually any Uncrewed Ground Vehicle or Uncrewed Aerial Vehicle into a robot capable of teleoperation and autonomy with a little bit of software and some sensor integrations.”

We’re not releasing full specs yet, but we’re incredibly excited about the capabilities offered by Cortex. It allows not only for remote teleoperation, but for the near-instant integration of additional sensors on UGVs and UAVs without all the coding. We can also bundle Cortex with additional software stacks like InDro Autonomy. And, of course, it plays nice with InDro Controller.

If you follow InDro, you’ll be aware we previously developed the popular InDro Commander, which carries out similar functions. Cortex is the logical descendant of that R&D, putting even greater power into the smallest package possible.

Though commercial release is scheduled for later this year, we’ve already had inquiries and pre-orders. Here’s a peek at Cortex on display at ICRA 2025:

InDro Cortex ICRA 2025

INDRO’S TAKE

 

We choose our conferences carefully. ICRA is truly at the centre of cutting-edge R&D and is a must-attend for us. Not only is it a great opportunity to expand our client base, but also a chance to see the latest and best research in the sector.

The show has come a long way since we were last here,” says Corbeth. “There has been an incredible amount of innovation in such a short period from the companies that exhibit and the researchers that are presenting. Notably, a lot of advancement in humanoids, grippers and solutions like Cortex that make it easier to develop, create and deploy robotics systems.”

Interested in more information about Cortex? You can hit us up here.

The rise of the humanoid robots

The rise of the humanoid robots

By Scott Simmie

 

Did you catch the recent news?

A few cool things have popped up on the humanoid front. The first is that Hyundai Motor Group – which owns a majority share in Boston Dynamics – announced it will purchase “tens of thousands” of robots for use in its factories in coming years. It’s part of a $21B US investment in United States operations, which includes $6B “to drive innovation and expand strategic partnerships with U.S. companies” according to this news release.

Hyundai has already deployed the Boston Dynamics quadruped Spot at some facilities, but the release makes it appear that the future is humanoid.

“Physical AI and humanoid robots will transform our business landscape to the next level. Through our collaboration, we will expedite the process to achieve leadership in the robotics industry,” said Jaehoon Chang, Vice Chair of Hyundai Motor Group.

The other news of note? Both Boston Dynamics and Agility Robotics (the makers of humanoid Digit) will join A3 (the Association for Advancing Automation) to develop a new safety standard for robots in the workplace. It’s said that the recent advances in humanoid robots were a key catalyst for the project.

How widespread will the adoption of humanoids be? Well, recent analysis by Morgan Stanley predicts eight million units will be on the job by 2040, and 63 million by 2050. Think about that for a minute.

Below: Atlas in a factory setting trial. Note the mistake – followed by an AI-driven correction

WHY HUMANOIDS?

 

There are plenty of robots on the market with a variety of form factors. There are wheeled AMRs, quadrupeds, fixed robotic arms – and more. So what is it about humanoids that differentiates them?

“Humanoid robots assume a human-like form factor,” explains InDro’s Head of R&D Sales Luke Corbeth. “It means it has bipedal or two-legged locomotion. They also tend to include dexterous hands – the ability to pick and place objects. They also ideally have some kind of autonomous functionality and the ability to interact with the environment in smart ways.”

Because of their bipedal form factor, humanoids tend to remind us of human beings (which is obviously how they get their name). Nearly all humanoids currently on the market are about the size of a human – and there’s a reason for that: Workplaces are largely built for people.

“What makes the humanoid form factor really exciting is, unlike traditional robots, the infrastructure doesn’t need to change to accommodate it. As a result, it can adapt to navigating different environments using existing equipment. This means we don’t need to retrofit factories, offices, and homes. So there’s much faster deployment for companies looking to adopt this technology,” he adds.

 

HANG ON A SECOND

 

You’ve no doubt seen videos by now of humanoids carrying out tasks. Often, these videos have been sped up. Humanoids, with rare exceptions, don’t yet move at the speed of human beings – and often have to pause to understand and perceive their environment.

But does that matter?

“The answer is kind of no,” says Corbeth. “In a lot of cases, humanoids can work around the clock. So if they’re slightly slower than humans are today, their overall productivity can still be higher. Plus, we’re still in the early phases of humanoids, so we do expect their speed and dexterity to continue improving over time.”

That being said, you can’t simply drop a humanoid into a factory setting and expect it to carry out work – at least not yet. Like a human employee, robots need training – often via remote teleoperation, coding, and additional autonomy stacks before they’re capable of punching the clock.

At InDro, we’re a North American distributor for Unitree, a leading global robotics manufacturer. In addition to its G1 and H1 (and H1-2) humanoid robots, the company has put considerable resources into its Dex5 dexterous hand. You’ll see in the video below it’s getting close to human-like capabilities – and that the G1 has impressive speed and agility even on challenging terrain.

INDRO’S TAKE

 

It’s still early days. But we’re excited about the potential for humanoids in an Industry 4.0 setting – and have some plans on this front.

“As an R&D company, we know that integrating any robot into a real-world setting takes work,” says Indro Robotics Founder/CEO Philip Reece. “With products like InDro Controller and our InDro Autonomy software stack – plus another innovation we’ll be releasing later this year – we have the ability to significantly enhance stock humanoids and dial them in for specific work settings. Humanoids are here to stay.”

Interested in learning more? Get in touch with us here.

InDro partners with Ericsson at Detroit’s AUTOMATE! show

InDro partners with Ericsson at Detroit’s AUTOMATE! show

By Scott Simmie

 

Cypher Robotics, a company InDro has incubated, is on the road. 

And – like it did recently at Hannover Messe in Germany – Cypher has again partnered with Ericsson to showcase technology at a major global technology show. This time around, it’s the big Automate event in Detroit from May 12-15, 2025.

Cypher is showcasing its cycle-counting robot called Captis. It’s a three-in-one Autonomous Mobile Robot (AMR) that can count warehouse inventory, capture RFID tags, and carry out precision scans of an entire facility. Its coolest feature? A tethered drone that can ascend from the base to count inventory at height in the back of massive warehouses.

Captis can also carry out missions as long as five hours before autonomously returning to a wireless recharging base. That’s enough time to count all the inventory in a 100,000 square foot warehouse – all while saving people from the repetitive – and potentially risky – task of working from heights.

But Cypher is doing more than show off Captis. It’s providing a tangible example of how a private 5G network can enable the future of automation.

Above: Cypher Robotics Founder and CEO Peter King (L) on stage at the recent Hannover Messe show in Germany

Below: The Captis system with its tethered drone. InDro Robotics is the incubator for Cypher Robotics

 

Cypher Robotics Captis

ERICSSON AND 5G

 

Captis is being displayed at the Ericsson booth. That company is the world leader in telecommunications hardware and software. Odds are high your local cellular provider runs on a network built by Ericsson.

And now, as companies globally transition toward an Industry 4.0 (IR4) world of automation and connected devices, those networks are more important than ever. Secure, high-speed data throughput in the form of private 5G networks is the very foundation of IR4.

“As part of their digital transformation and push towards Industry 4.0, we’re seeing manufacturers make investments in key areas like autonomy, industrial IoT devices and advanced analytics,” says Ericsson’s Jan Diekmann, the company’s Global vertical lead manufacturing – Private 5G Networks.

It is high-bandwidth, low-latency throughput that enables all of this data to stream in real-time. Increasingly, major manufacturers like Jaguar Land Rover (JLR) are installing private 5G networks from Ericsson to handle the task.

“This cutting-edge networking technology is enhancing the production of Range Rover vehicles by supporting business-critical applications such as vision systems, IoT sensors, and production tools,” explains this Ericsson post. “The deployment of Ericsson Private 5G is a pivotal step for JLR in embracing Industry 4.0.”

But why not simply utilise a public 5G provider? The answer is simple.

“If you use a public network, your data goes through that public network,” says Diekmann. “If you have a private network, you get the security that comes with having the data managed by you. You control who sees it, where it goes. You can also accommodate a high density of devices in a small area – which is critical in an Industry 4.0 setting.”

 

WHY CYPHER ROBOTICS?

 

Cypher Robotics was invited to display its Captis solution alongside Ericsson both at Automate in Detroit, and at the recent Hannover Messe show in Germany. It’s a hands-on way of demonstrating what a private 5G network can achieve in a real-world setting. All data from Captis is instantly and securely uploaded to a company’s Warehouse Management System. 

“That’s the reason we like to showcase use-cases. We’re really trying to help manufacturers see the value of a private 5G network and bring the concept to life,” adds Diekmann.

Below: Cypher Robotics Founder and CEO Peter King, left, along with partners Ericsson and Slolam Consulting

Cypher Robotics Peter King Hannover Messe Captis

INDRO’S TAKE

 

InDro is pleased to see Captis and Ericsson once again collaborate on the global stage. As the incubator for Cypher Robotics, we are particularly proud.

“The Captis solution is truly at the forefront of cycle-counting technology, and it’s been very satisfying to assist the Cypher Robotics team overcome some of the demanding technical hurdles,” says InDro Robotics Founder and CEO Philip Reece. “In addition to what it can do for clients, Captis is also a great way for Ericsson to demonstrate the undeniable efficiencies that private 5G networks enable in an Industry 4.0 setting.”

By the way, Captis and our flagship inspection robot Sentinel do more than attend conventions. Both solutions are currently deployed, counting inventory and carrying out daily inspections, with clients in three different countries.

Interested in learning more? Our Head of R&D Sales, Luke Corbeth, loves talking robots. You can reach him here

InDro, UBC partner on medical drone deliveries to remote communities

InDro, UBC partner on medical drone deliveries to remote communities

By Scott Simmie

 

InDro Robotics is pleased to partner with the University of British Columbia on a pilot project that will use drones to deliver critical medical supplies to remote communities in that province.

It’s a use-case InDro has long supported. In fact, during previous trials we have securely delivered prescription medications to Gulf Islands in conjunction with Canada Post and London Drugs. It was Canada’s first-ever BVLOS RPAS delivery of its kind. That, however, was a short-term demonstration. The UBC partnership is long-term and has broader goals.

“There are multiple aspects to this project,” explains InDro Robotics Founder and CEO Philip Reece. “In addition to delivering critical medical supplies, we’ll be evaluating what kinds of cargo can be delivered, how drones perform in year-round weather, and ultimately how beneficial this service is for communities and local health-care providers.”

Initially, the project will focus on transporting personal protective and laboratory test swabs before expanding to include prescription medications and other supplies – including blood products. InDro has expertise in this field as well, carrying out trials in Montreal in 2019 to deliver simulated blood products by drone between hospitals. The work required strict temperature controls to ensure viability.

All of this is very much up our alley. In fact, InDro carried out deliveries of COVID test supplies during the height of the pandemic to a remote First Nations community:

LOGICAL, EFFICIENT

 

You don’t need to look very hard to find examples of where drone delivery of medical supplies has been hugely successful. The most well-known is Zipline, which has logged more than 100 million miles (160M km) delivering vaccines, blood products and other medical supplies in Africa and has recently expanded into some US locations.

The philosophy here is simple: It’s much faster and more efficient to move products to patients – rather than vice-versa.

“For generations, we’ve had a medical system where we tend to move patients to resources, as opposed to resources to patients,” explains Dr. John Pawlovich, the Rural Doctors’ UBC Chair on Rural Health, in this UBC post on the project.

“It’s the same problem around rural Canada and around the world—resources that patients need are either in short supply or they don’t exist in rural, remote or Indigenous communities.”

Dr. Pawlovich and his team are working closely with the Village of Fraser Lake, located west of Prince George, as well as with the Stellat’en First Nation. Both of these qualify as isolated communities, where it’s not always easy to get critical supplies quickly.

“Based on the isolated location of our community and the needs of our residents, drone transport may enhance our access to COVID-19 testing and medication without travelling and endangering other members of our community,” says Chief Robert Michell of the Stellat’en First Nation.

 

NOT JUST PATIENTS

 

It’s not simply about making things easier for patients. As we learned with shuttling COVID test supplies to and from Penelakut Island, it can also help healthcare providers. In that example, it meant a community clinic worker no longer had to pick up and deliver these supplies in person – a nearly full-day endeavour that took them away from helping patients in their community. Instead, in coordination with InDro Ops, they simply loaded or unloaded a drone that landed outside their clinic.

And, says Dr. Pawlovich, there’s no question the selected communities could benefit from a boost in healthcare access.

“Residents of rural, remote and Indigenous communities face much greater health-care disparities than other residents of BC,” he says. The UBC article states that life expectancy is lower and that people in these communities have reduced access to specialty care, imaging and laboratory investigations.

“These inequities predate COVID-19. They’ve been amplified during the pandemic and continue to exist. We’re looking at how technology can start to shrink and close that inequity gap.”

Below: Stellat’en First Nation, which is close to the Village of Fraser Lake. The drone deliveries will be coming from Prince George.

UBC Drone Delivery Village of Fraser Lake

INDRO’S TAKE

 

This isn’t our first foray into the world of healthcare and drone delivery. But it is our first long-term project in the field.

“There’s a lot we’re going to learn with this research,” says InDro Robotics Founder and CEO Philip Reece. “As it progresses, we hope to expand the range and payload of these missions to best benefit patients and healthcare providers. Over time, it’s our hope to be able to respond even to emergencies, getting supplies to those who need them most in a timely fashion.”

Flights for the new project will commence in 2026 – and we’ll be sure to update you!

Research using InDro robots for real-world autonomy

Research using InDro robots for real-world autonomy

By Scott Simmie

 

As you’re likely aware by now, InDro builds custom robots for a wide variety of clients. Many of those clients are themselves researchers, creating algorithms that push the envelope in multiple sectors.

Recently, we highlighted amazing work being carried out at the University of Alberta, where our robots are being developed as Smart Walkers – intended to assist people with partial paralysis. (It’s a really fascinating story you can find right here.)

Today, we swing the spotlight down to North Carolina State University. That’s where we find Donggun Lee, Assistant Professor in the Departments of Mechanical Engineering and Aerospace Engineering. Donggun holds a PhD in Mechanical Engineering from UC Berkely (2022), as well as a Master’s of Science in the same discipline from the Korea Advanced Institute of Science and Technology. He oversees a small number of dedicated researchers at NCSU’s Intelligent Control Lab.

“We are working on safe autonomy in various vehicle systems and in uncertain conditions,” he explains.

That work could one day lead to safer and more efficient robot deliveries and enhance the use of autonomous vehicles in agriculture.

Below: Four modified AgileX Scout Mini platforms, outfitted with LiDAR, depth cameras and Commander Navigate are being used for research at NCSU. Chart below shows features of the Commander Navigate package

Research Robots
Commander Navigate

“UNCERTAIN” CONDITIONS

 

When you head out for a drive, it’s usually pretty predictable – but never certain. Maybe an oncoming vehicle will unexpectedly turn in front of you, or someone you’re following will spill a coffee on their lap and slam on their brakes. Perhaps the weather will change and you’ll face slippery conditions. As human beings, we’ve learned to respond as quickly as we can to uncertain scenarios or conditions. And, thankfully, we’re usually pretty good at it.

But what about robots? Delivery robots, for example, are already being rolled out at multiple locations in North America (and are quite widespread in China). How will they adapt to other robots on the road, or human-driven vehicles and even pedestrians? How will they adapt to slippery patches or ice or other unanticipated changes in terrain? The big picture goes far beyond obstacle avoidance – particularly if you’re also interested in efficiency. How do you ensure safe autonomy without being so careful that you slow things down?

These are the kinds of questions that intrigue Donggun Lee. And, for several years now, he has been searching for answers through research. To give you an idea of how his brain ticks, here’s the abstract from one of his co-authored IEEE papers:

Autonomous vehicles (AVs) must share the driving space with other drivers and often employ conservative motion planning strategies to ensure safety. These conservative strategies can negatively impact AV’s performance and significantly slow traffic throughput. Therefore, to avoid conservatism, we design an interaction-aware motion planner for the ego vehicle (AV) that interacts with surrounding vehicles to perform complex maneuvers in a locally optimal manner. Our planner uses a neural network-based interactive trajectory predictor and analytically integrates it with model predictive control (MPC). We solve the MPC optimization using the alternating direction method of multipliers (ADMM) and prove the algorithm’s convergence.

That gives you an idea of what turns Donggun’s crank. But with the addition of four InDro robots to his lab, he says research could explore many potential vectors.

“Any vehicle applications are okay in our group,” he explains. “We just try to develop general control and AI machine learning framework that works well in real vehicle scenarios.”

One (of many) applications that intrigues Donggun is agriculture. He’s interested in algorithms that could be used on a real farm, so that an autonomous tractor could safely follow an autonomous combine. And, in this case, they’ve done some work where they’ve programmed the Open Source Crazy Flie drone to autonomously follow the InDro robot. Despite the fact it’s a drone, Donggun says the algorithm could be useful to that agricultural work.

“You can easily replace a drone with a ground vehicle,” he explains.

And that’s not all.

“We are also currently tackling food delivery robot applications. There are a lot of uncertainties there: Humans walking around the robot, other nearby robots…How many humans will these robots interact with – and what kind of human behaviours will occur? These kinds of things are really unknown; there are no prior data.”

And so Donggun hopes to collect some.

“We want to develop some sort of AI system that will utilise the sensor information from the InDro robots in real-time. We eventually hope to be able to predict human behaviours and make decisions in real-time.”

Plus, some of Donggun’s previous research can be applied to future research. The paper cited above is a good example. In addition to the planned work on human-robot interaction, that previous research could also be applied to maximise efficiency.

“There is trade-off between safety guarantees and getting high performance. You want to get to a destination as quickly as possible and at speed while still avoiding collisions.”

He explains that the pendulum tends to swing to the caution side, where algorithms contain virtually all scenarios – including occurrences that are unlikely. By excluding some of those exceedingly rare ‘what-ifs’, he says speed and efficiency can be maximised without compromising safety.

Below: Image from Donggun’s autonomy research showing the InDro robot being followed by an Open Source Crazy Flie drone

NCSU InDro Navigator Cray Flie

INDRO’S TAKE

 

We, obviously, like to sell robots. In fact, our business depends on it.

And while we put all of our clients on an equal playing field, we have a special place in our non-robotic hearts for academic institutions doing important R&D. This is the space where breakthroughs are made.

“I really do love working with people in the research space,” says Head of R&D Sales Luke Corbeth. “We really make a concerted effort to maximise their budgets and, when possible, try to value-add with some extras. And, as with all clients, InDro backs what we sell with post-sale technical support and troubleshooting.”

The robots we delivered to NCSU were purchased under a four-year budget, and delivered last summer. Though the team is already carrying out impressive work, we know there’s much more to come and will certainly check in a year or so down the road.

In the meantime, if you’re looking for a robot or drone – whether in the R&D or Enterprise sectors – feel free to get in touch with us here. He takes pride in finding clients solutions that work.