Aergility hits major milestone with untethered ATLIS hover test

Aergility hits major milestone with untethered ATLIS hover test

By Scott Simmie


A US-based company called Aergility just hit a major milestone worth recognising. The company’s uncrewed cargo vehicle, called ATLIS, successfully completed multiple untethered test hovers on May 10.

This is a big deal on the path toward commercialisation for Aergility, which has designed an aircraft unlike any other we’ve seen. It’s a VTOL with a small fixed wing that also employs managed autogyro technology to assist in lift.

We first saw this just over two years ago in Florida, at the AUVSI show. The company was attracting a lot of attention because of its range (800km/500 miles) and payload capabilities (300 pounds then; since upgraded to 500 pounds).

At the time, the product on the floor still required further integration and FAA permission before test flights could commence. Last fall, Aergility conducted successful tethered test flights – but this was the first time it was in a free hover, manually controlled by a pilot. In all, there were four test hovers, each lasting roughly a minute. Pitch, yaw and control functions were successfully tested. The aircraft also flew out of ground effect mode, to a height of six metres (20′).

“The solid performance of ATLIS in its initial and subsequent hover flights gives us the confidence to move to forward flight testing in early June. We are excited about demonstrating the full potential of ATLIS to our stakeholders,” said Jim Vander Mey, CEO of Aergility Corporation.

We’ll get into far more details about this aircraft in a moment. But first, here’s a look at a video Aergility just posted showcasing the event.




The beauty of ATLIS is its simplicity.

Takeoff (and hovering) is accomplished by six electrically powered rotors (the commercial version will feature eight rotors in four coaxial pairs for redundancy purposes).

Once airborne, the front tractor turboprop spins up and the aircraft begins forward flight with no awkward transition. The VTOL stage of flight lasts only about 30 seconds, so ATLIS doesn’t need to carry massive batteries.

As the forward speed increases, the power supplied to the lifting motors is reduced and eventually tapers to net zero when ATLIS reaches reaches an airspeed of 112-128 km/hr (70-80 mph). In forward flight, airspeed spins the lifting rotors.

But these rotors aren’t simply freely spinning. Remember this is “managed autogyration” – which means ATLIS is in control of the RPMs at all time – with the ability to slow some or speed up others.

“We get our forward propulsion from a turboprop, and airflow goes through the rotors to provide autogyro-type of lift,” explained Brian Vander Mey, Aergility’s head of Business Development and Partnerships.
“Our wings provide a portion of lift during cruise flight, but the rotors themselves carry about 40 per cent of the lift.”



Although there are control surfaces for testing in the current version of ATLIS (trim tabs and a rudder for slow-speed manoeuvering), the eventual version for clients will have no control surfaces. Pitch, roll and yaw functions in both hover and forward flight operate in a similar fashion to a standard quadcopter, with variations in speed between the different lifting rotors resulting in the desired manoeuvre.

“To summarize the technology, essentially the aircraft takes off and lands vertically like a normal multi-rotor aircraft,” says Brian Vander Mey.

“But in forward flight the power for our rotors slowly tapers off until it’s down to zero net power for forward flight…(that’s where) our rotors go into a state that we call managed autorotation. It is called that because of the fine control we have over the autorotation state, allowing us to stay at net zero power while still having attitude and maneuvering control – which would expend net power in a quadcopter.”

Remember, Aergility is in control of those RPMs at all times. That means if pitch, yaw or roll are required, it can accomplish this by putting the brakes on the appropriate rotors and speeding up others. In doing so, similar to a Tesla, regenerative braking is involved.

“So if we need to make some sort of a banking maneuver, we may accelerate rotors on one side and brake rotors on the other side, which both consumes and generates power, but in equal proportions. So we end up maintaining net zero power usage across the whole system.”

In other words, the energy created by putting the brakes on one rotor generates electricity that is applied to another. Because of this design, ATLIS doesn’t have to carry much battery power, which means lower battery weight and greater payload capacity.

“That means that our range is only limited by the amount of fuel that we have on board.”

Below: An image from an Aergility information deck shows how the system works

Aergility Deck



Its impressive payload capacity and range make ATLIS ideal for getting critical cargo to remote locations, or places with limited infrastructure. It requires only a 9m x 9m (roughly 30′ x 30′) space for takeoff of landing, and the company says it has a small downwash and noise signature.

This makes it ideal, says Brian Vander Mey, for multiple use-case scenarios. It is perfect, he says, for “anywhere that is difficult to access due to its remoteness, or where the cost of getting there is prohibitive, or areas with non-existent, limited, or damaged infrastructure.”

He then offers a few examples:

“This could include places like Puerto Rico, where all of the roads were destroyed by Hurricane Maria. It could be used in mining, oil & gas – really anywhere that fits that profile that it’s hard, dangerous or expensive to get there via other means.

“Canada may be one of the biggest potential opportunities. We’ve spoken with Canada Post and learned of the challenges delivering to the northern regions and First Nations communities, and with the massive wildfire problems, this aircraft can address remote support.”

CEO Jim Vander Mey adds: “We look forward to the impact this technology will have on various industries, including logistics, disaster relief, and military applications.”





The current version of ATLIS will be going through further testing, starting with forward flight in June of 2024. Meanwhile, the team is also looking ahead to a new iteration of ATLIS intended for production for clients. Lessons have been learned – as always in R&D – that can help improve the next generation. The cargo hold will be larger and modular, the rotors will be higher off the ground to allow ground crews to move safely below the aircraft, and the previously mentioned eight-rotor coaxial VTOL system will be incorporated.

“That will enable us to lose one to two rotors and still complete a mission – not simply just be able to get down to the ground under control,” says Brian Vander Mey.

And remember how ATLIS is only required to carry minimal batteries because the period of hovering is quite brief? An onboard generator that’s part of the turboprop engine recharges those batteries completely in as little as eight to 10 minutes during forward flight. And if that generator stops working? Aergility has a solution for that, as well.

“In the event the generator was to fail, we can change the angle of attack of the aircraft,” he says.

In other words, pitch down slightly to increase the airspeed spinning those VTOL rotors.

“So the entire aircraft has more aerodynamic energy coming across the rotors and we can recharge directly off of the rotors from forward flight without the the intermediate generator on the motor.”

As stated, this machine can fly 800 kilometres (500 miles) carrying 227 kg (500 pounds). That also means it could fly shorter distances with a heavier payload – or an exceptionally long range if the payload is additional fuel. Vander Mey says the commercial version of ATLIS will be able to fly some 3,400km (1900 miles) if that cargo bay is carrying additional fuel as its payload.

Below: More data from a supplied Aergility information deck:





Uncrewed cargo vehicles like ATLIS will play an important role in the coming world of Advanced Air Mobility – where airspace is shared between traditional aircraft and this new generation of vehicles. The FAA and Transport Canada have their own long-term plans on achieving this integrated airspace and both regulators are fully onboard with this vision of the future. Uncrewed vehicles will (generally) offer more sustainable flight, and be able to drop into locations unreachable except by helicopters at a reduced cost.

We’ve written about this world at length here. It’s also worth mentioning that in Canada, the lobby organization the Canadian Advanced Air Mobility Consortium is working closely with regulators and the industry to ensure a smooth transition forward.

There’s no question that under-serviced areas and remote locations – including those with zero traditional aviation infrastructure – will benefit greatly. There’s also, of course, the important use-cases of getting emergency supplies into disaster zones.

That world isn’t going to happen tomorrow. Nor is the FAA certification of ATLIS – a meticulous and time-consuming process that will truly begin when the commercial version of the aircraft is built. In the meantime, Aergility is operating with a Special Airworthiness Certificate (SAC-EC) from the FAA. It also has Certificates of Authorization (COAs) that cover an area near its local hangar, which grants permission for forward flight testing within a specific area (roughly 10 square miles, or 2,590 hectares). It also allows for flights at higher altitudes.




When it comes to commercial applications, Aergility knows that process will be lengthy. It’s following standards set up by ASTM International during all phases of design, construction and testing.

“Industry standards are being developed through organizations like ASTM,” says Brian Vander Mey. “We expect that by aligning our processes with what ASTM is developing, that will be the the cleanest path to permission to operate in the US.”

And until that coveted certification is reached? Aergility says FAA Waivers for specific operations will be obtained to enable commercial flights for operations until then.

“We don’t need Waivers for our own testing because of our special FAA permissions. But potentially we’ll have clients initially flying under Waivers.”

Aergility ATLIS



We were impressed with ATLIS from the moment we first saw the vehicle. Its cargo capacity and range filled a void, and the managed autogyration is an ingenious concept. But it’s one thing to see a static, non-functioning display on a convention floor – and quite something else to see this machine carry out multiple stable hovers.

“Aviation R&D is a very tricky business, and becomes more complex with larger aircraft intended for eventual certification,” says InDro Robotics CEO Philip Reece.

“This is an incredible milestone for ATLIS and the Aergility team. We see great potential for this aircraft in multiple use-case scenarios, and look forward to success in the upcoming forward flights.”

To learn more about Aergility and its progress, check out its website here. You can also follow Aergility on LinkedIn here.


Canadian Advanced Air Mobility Consortium attends Dubai Airshow

Canadian Advanced Air Mobility Consortium attends Dubai Airshow

By Scott Simmie


Ever been to a *really* big airshow?

The two best-known take place in the UK and France on alternating years. One is the Farnborough International Airshow (been there twice), and the Paris Airshow (Salon du Bourget). From the biggest passenger-carrying jets in the world down to the tiniest fastener, these massive events include every element in the aerospace supply chain (and then some). From Airbus to Rolls Royce, in-flight entertainment systems to military-spec rivets, you’ll find them there.

One of the other major global events is the Dubai Airshow. With more than 1400 exhibitors and 180+ aircraft on flying or static display, it’s also a must-attend.

This year’s event took place November 13-17, and one of the key themes was the rapidly approaching era of Advanced Air Mobility. That’s the world where transformative and sustainable aircraft (including air taxis) will play a role in transporting goods and people both within major cities and to smaller communities not currently served by traditional aviation. Many if not most of these new aircraft are being designed for eventual autonomous operation.

Canada, of course, has a stake in this new world. In fact, we recently wrote about the purchase by Vancouver’s Helijet of an eVTOL aircraft (a BETA Technologies ALIA 250) for crewed operations in British Columbia. So we were pleased to see that the Canadian Advanced Air Mobility Consortium (CAAM) attended – and presented at – the Dubai Airshow.


Dubai AAM



Formed in 2019, CAAM is the national voice representing Advanced Air Mobility in Canada. With 70+ members spanning industry, government, academia and associations, CAAM plays a crucial role in this emerging sector. Its stated vision is to create “A unified national strategy for Zero-Emission Advanced Air Mobility with regional implementation in Canada.” And its mission?

“To build an ecosystem of national collaboration in creating and operating a sustainable, equitable and profitable Advanced Air Mobility industry in Canada.”

CAAM is led by Executive Director JR Hammond, who represented the organization – and by extension, Canada – at the Dubai Airshow. We asked him for his own short definition of AAM:

“It changes our concept of how we move people, goods and resources across our cities and regions. With these new aircraft we no longer are constrained to just railways, marine or ground transportation,” he says.

Dubai was Hammond’s first international air show – and it left quite an impression.

“We were blown away not only by the representation of Advanced Air Mobility in the RPAS sector, but how leading organizations globally – Asia, North America and Europe – brought aircraft and technology to the Middle East to showcase. This bubbling of activity globally is only expediting our operational pathways.”

Below: The Archer Aviation Midnight, an electric AAM vehicle capable of flying 160 kilometres (100 miles). The aircraft has been optimized for shorter flights of roughly 32 km (20 miles) with a charge time between flights of just 12 minutes.





The spark for the trip came from CAAM’s national board, says Hammond. It suggested to the executive team it would be worthwhile for the organization to have a greater presence at global gatherings – and specifically at air shows.

While a lot of AAM attention focuses on the impressive emerging aircraft technology, Hammond says there are a number of pillars that must be aligned for Advanced Air Mobility to truly take flight. Obviously, there’s the Uncrewed Traffic Management aspect – the safe integration of pilotless aircraft into traditional airspace.

But there are many other challenges CAAM has been exploring and believes are integral to the future success of AAM.

“There’s a lot of other pillars that countries and different delegations are not focusing on – like the insurance industry, or the cyber security aspect of communication. So we were tasked by the board to showcase Canada – how we can bring all of these different pillars to the global scale. A lot of these nations are not doing this and they’re seeing the challenges.

“The great example given is United Arab Emirates, which arguably is one of the leaders in AAM with their Drone Up operations… They have not focused on how they’re going to integrate this into conventional airspace, how they’re going to bring this on with different telecommunication providers and insurance providers. That’s what we’re focusing on right now and they were learning a lot from us.”

Below: JR Hammond (holding microphone) onstage during one of two sessions where he was a panelist. The first was “Pathway to eVTOL commercialisation” and the second was “Advanced aerial cargo delivery advancements.”


JR Hammond CAAM Dubai



There’s a lot of work ahead.

Obviously, there’s the development, validation and certification of aircraft. Though there are some full-scale designs now operational (such as the EHang EH216-S, which was certified in October by the Civil Aviation Administration of China), many companies are still working with scale models or Minimum Viable Products. Certification through agencies like the FAA is, by necessity, a methodical and demanding process that takes years.

There’s also the question of how to safely integrate these new vehicles into airspace currently used by traditional aviation. Will there be specific low-level flight corridors set aside for smaller AAM aircraft/RPAS in urban settings? (Mostly likely yes, and almost certainly in Canada and the US. In fact, InDro is involved in some of the research and test flights for this).

Will there be rules around where and how many Vertiports (takeoff and landing sites for eVTOL aircraft) can be established in cities? Will certain use-cases, such as urgent medical deliveries, take priority in the early phase of adoption to build public acceptance? What role in standards and operational guidelines will the International Civil Aviation Organization (ICAO) ultimately play?

And then there are those pillars JR Hammond alluded to: Communications, insurance, cyber-security and more.

It sounds like a lot to overcome – and it is. And that’s why conversations and panels like those which took place in Dubai are so critical as the move to AAM begins to accelerate.

“Even though we are all at different stages, the amount of collaboration already occurring in saying: ‘We need to solve this together’ was by far greater than anything than I’ve ever seen before in aerospace or business,” says Hammond.

So the commitment and collaborative spirit is there.

Dubai Hammond AAM



There is a consensus, particularly with passenger-carrying aircraft, that the jump to autonomous flight won’t be immediate. There will be a graduated approach, starting with a pilot on board those aircraft. It’s anticipated early flights will be manually controlled, then monitored by a pilot still capable of taking over if required.

“In terms of autonomy, any market entry piece will happen with a pilot on board with full control and an augmented system similar to the autopilot systems that we have on commercial airliners today,” says Hammond.

“Then, as regulations and social acceptance and – of course – our policies increase, then we can move upwards on our autonomy scales towards that ‘human in the loop’ and then of course autonomous aircraft at some point in the future.”

But, says Hammond, it will be cargo deliveries – both intra-urban and inter-regional – that will come first.

“We need autonomous operations today in the cargo space before we even have a chance at the passenger space… And more resources and more efforts are needed to solve out what those air corridors can look like, with autonomous aircraft operating in our conventional airspace.”

Below: Mid-sized drones like this, carrying medical or other critical supplies, will likely be the vanguard of the transition to AAM.

Dubai Hammond AAM



With a variety of InDro Robotics delivery drones – including a model proven in trials for temperature-sensitive medical deliveries between hospitals – InDro has a vested interest in the AAM future. But it’s not just about us – far from it.

“I believe AAM will be truly transformative – and I’m not talking about the delivery of coffee and bagels to someone’s back yard,” says InDro Robotics CEO Philip Reece.

“Advanced Air Mobility will mean that critical – and even life-saving – products can be quickly and safely transported across cities and to nearby regions in a fraction of the time of traditional ground delivery. It’s going to mean that people in some remote and isolated communities will be able to board regular or on-demand flights for the first time ever,” he adds.

“Plus, sustainable flight will play a significant role in reducing greenhouse gas emissions at a time when such measures are very much needed.”

We were pleased to see JR Hammond and CAAM representing Canada’s AAM interests – and solutions – on a global stage. (And, if this is your first introduction to AAM and CAAM, you can find out more in our primer here.)

All images, with the exception of JR Hammond on the panel, courtesy of Dubai Airshow.