Industry 4.0 and InDro – the evolution continues

Industry 4.0 and InDro – the evolution continues

By Scott Simmie

 

Many of you will remember the days before smart phones. Same goes for automated tellers, online banking, self check-outs, personal computers, 3D printers – even the internet itself. Technology hasn’t merely marched along; it’s been sprinting at an ever-accelerating pace. What’s more, it’s been doing so pretty much everywhere. From the smart devices that now populate our pockets and homes and vehicles through to autonomous mobile robots in factories, hospitals, warehouses, airports – we are in the midst of an inflection point.

If you’re in the technology industry, this era is known as Industry 4.0. And there’s no question that it is – and will continue to be – utterly transformative.

Let’s take a brief look at how we got here…and where it’s going.

Below: An InDro Robotics Sentinel inspection robot. It carries out complex autonomous inspections before returning to its base to wirelessly recharge

Sentinel enclosure Ottawa Hydro

THE PATH TO 4.0

 

Industry 4.0 is also known by some as 4IR, meaning the Fourth Industrial Revolution. So it’s worth briefly reviewing the other three.

The initial Industrial Revolution began in the UK in the mid-1700s. The development of steam power, water power, and mechanisation paved the path for production of certain commodities at scale. They may seem primitive now, but these were huge innovations at the time. These efficiencies helped vault the UK to a leading economic position and the technology began rapidly spreading elsewhere in the world.

That was followed by three other industrial epochs:

  • The late 1800s, where mass production lines using electrical power marked the outset of the Second Industrial Revolution
  • The late 1960s saw the introduction of computers and other early IT systems, as well as significant advances in automation including simple robotic devices
  • The mid-2010s ushered in Industry 4.0, often described as the integration of cyber and physical systems (more on this in a moment)

To help visualise this, we’ve tapped on Wikimedia Commons, and this graphic from Christoph Roser at AllAboutLean.com

Industry 4.0 Wikimedia Commons Christoph Roser at AllAboutLean.com

THE FOURTH WAVE

 

As we saw, what’s thought of as the Third Industrial Revolution brought computers and early robotics/manufacturing advances onto the scene. Industry 4.0 can be thought of as the logical extension of the third – but with massive technological and data integration advances. As this Forbes article puts it, “The fourth industrial revolution will take what was started in the third with the adoption of computers and automation and enhance it with smart and autonomous systems fueled by data and machine learning…As a result of the support of smart machines that keep getting smarter as they get access to more data, our factories will become more efficient and productive and less wasteful.”

We asked an AI engine for its take, and it came back with a very concise definition: “Industry 4.0 is a term that describes the ongoing technological revolution that is transforming how companies operate, design, produce, and deliver goods and services.”

It also offered, helpfully, the key enabling technologies including: 

  • Artificial Intelligence 
  • The Internet of Things 
  • Big Data Analytics 
  • Augmented Reality 
  • Precision Scanning and digital twins
  • Robotics
  • Advanced manufacturing techniques, including 3D printing

COVID-19, with its extensive isolation and social distancing, played a significant role in companies embracing Industry 4.0. A basic example many can relate to was the growth of UberEats and other food delivery services. The coding and technology – the integration of the cyber and physical words – utterly transformed much of the restaurant industry.

It would be hard to think of a sector that has not been touched by 4IR: Manufacturing, mining, agriculture, pharmaceuticals, aerospace – you name it.

 

INDRO 4.0

 

Industry 4.0 is a massive topic – with implications not only for companies seeking a competitive edge but also for workers. Many companies, according to this excellent McKinsey and Company overview (complete with compelling data and examples of ‘Lighthouses’ – companies at the pinnacle of 4.0), are re-skilling employees hand-in-hand with adopting new 4IR technologies. Europe here has taken the lead over North America.

As for InDro? The company was officially formed in 2014. That happens to be the year generally accepted as the year Industry 4.0 began. And from the beginning, this has been the realm where our R&D has taken place. As a leader in the autonomous robotic space, many of our own inventions and custom builds operate in the Industry 4.0 space. We’re particularly proud of our Sentinel inspection robot (several of which are now working autonomously for a major US energy client), and also Captis – the leading solution in inventory cycle counting and precision scanning for large warehouses and other supply chain assets. InDro Robotics was the technology incubator for Captis, produced by Cypher Robotics. It’s already on the job in Canada, and will soon be deployed in New Zealand.

Below: The Captis cycle-counting and precision scanning system

Sentinel

INDRO’S TAKE

 

Industry 4.0 isn’t just a buzzword. It is a full-fledged transformation leveraging multiple complex technologies working in synergy for greater efficiency. Most of our clients have fully embraced IR4 or are in the midst of that transformation. And we, as always, continue to develop new robots, drones and other products for this new and exciting era.

“Industry 4.0 certainly draws on the framework laid by 3.0, but the technological advances of the past decade have been truly transformative,” says InDro Robotics Founder and CEO Philip Reece. “We are definitely in the midst of a new and exciting era, and InDro will continue to develop intelligent and innovative products for Industry 4.0. And yes, when 5IR eventually comes along…we’ll be ready.”

Want to learn more about how an InDro solution can help your company in IR4? Interested in learning how a private 5G network can offer smart factories a competitive and security edge? Head of R&D Sales Luke Corbeth is always up for a thoughtful conversation.

RIP Romeo Durscher – a true pioneer in the drone field

RIP Romeo Durscher – a true pioneer in the drone field

By Scott Simmie

 

The drone industry has lost a true visionary. Romeo Durscher, who revealed last year he had terminal cancer, passed away peacefully in his sleep March 3.

But while he’s gone, he certainly – truly – will not be forgotten. He leaves an incredible and admirable legacy. His work, and personality, touched countless people in this sector.

As most of you will know, Romeo was an early champion for the use of drones in First Responder work. That passion would ultimately influence the design of several DJI drones and expand use-case scenarios. He worked closely with police departments, tactical agencies, emergency responders and even Interpol over the years. His contributions were recognised with multiple honours.

In fact, in December of 2024, the Law Enforcement Drone Association honoured Durscher with its first-ever Lifetime Achievement Award.

“This prestigious honor is a testament to Romeo’s visionary leadership and extraordinary contributions to public safety through the adoption of drone technology,” said LEDA in its announcement.

“Long before drones became integral tools for saving lives and protecting communities, Romeo foresaw their transformative potential. With unwavering passion and dedication, he turned that vision into reality, revolutionizing public safety operations around the world.”

And he will be very much missed.

“He had a way of lighting up a room, of making everyone feel seen and valued,” wrote Airwards Founder Richard Nichols in a post on LinkedIn. “His passion for drones and the power of their potential to do good was infectious, and he inspired countless people to pursue their own dreams in this industry. He leaves behind a legacy of innovation, kindness, and genuine human connection.”

Below: Romeo receiving an award on behalf of DJI at the 2019 Aerial Evolution Association of Canada conference

Romeo Durscher

THE ROAD TO RPAS

 

Romeo obviously didn’t start out in the drone world. RPAS as we now know them, didn’t exist when the Swiss-born (and multilingual) Durscher started out in the world of banking. He began as an intern and it wasn’t long before he was promoted to the position of Investment Banker. A few jobs later (including working as a rock promoter, even organising tours) and he landed at Stanford University. He spent nearly 13 years there, where his interest in technology had a chance to flourish.

Romeo was Stanford’s Senior Manager on its Solar Dynamics Observatory – a partnership with NASA. He often spoke fondly of those years, and would later tell DroneLife it was there that he first built a multi-rotor.

“In 2010, when I was still deeply involved in NASA missions, Mark Johnson and I began experimenting with a new kind of technology. Multi-rotors were practically unheard of, but we found components from all over and pieced together our own drones. I vividly remember the first time we flew one. For Mark, it was clear this could be a powerful tool for his forensic analysis business. For me, it unlocked something new—a fresh perspective from the air,” he told the website.

“Something about this new technology grabbed me. I knew it had a future beyond NASA, especially in public safety. The memory of my Swiss military service, wishing for a real-time aerial view, fueled my desire to bring drones to new spaces.”

 

DJI

 

Drones were still in their very early stages, but Durscher could see the potential. This was the space he wanted to pursue. He joined DJI in January of 2015 as Director of Education, back in the days when a GoPro attached to the first-generation Phantom was seen as pretty much state-of-the-art.

As the technology advanced, so too did use-case scenarios. And Durscher was at the forefront, becoming the Senior Director of Public Safety Integration. That job entailed working closely with fire rescue, EMS, law enforcement, tactical agencies – you name it. And not only did he help expand their capabilities, he also spent endless hours listening to those First Responders. What other use-cases might drones be helpful for? What other features – whether hardware or software – might make these tools even more useful?

He took that feedback directly back to the engineering teams at DJI in Shenzhen. That intel directly influenced the final version of many of DJI’s Enterprise series of drones. The Mavic 2 Enterprise, with its options of thermal imaging, a loudspeaker, and a bright light, owes much of its heritage to Romeo Durscher. He also played a role in the design of the M200, M300 and even the third-party Epson Moverio AR glasses.

But that’s not all. Durscher also built a reputation for getting down in the trenches when necessary. In November of 2018, the devastating Camp Fire broke out in California. Within 12 hours, that wildfire had consumed 55,000 acres and thousands of homes. More than 100 people lost their lives.

Durscher and DJI immediately jumped in, working with multiple agencies in the most ambitious high-resolution drone mapping project in history at that time. The entire devastation was mapped – providing an essential tool for First Responders, urban planners – and even residents who wanted to see what had happened to their neighbourhood. It was an absolutely immense task, and Durscher was a key lynchpin for the overall organization and implementation.

And yet, in true Romeo fashion, he downplayed his own role – instead extending credit to all of those involved and the technology itself. Those who knew Romeo will recognise this as a character trait.

Below: The massive map database of the Camp Fire

AFTER DJI

 

Romeo left DJI in December of 2020 with an already incredible legacy. But he wasn’t done yet. From there it was off to Auterion, where he became a champion of Open Source and broader robotics integration as Senior Vice President of Strategy. He also served as a Director at FLYMOTION, worked hands-on as an operator and advisor with Florida’s Pasco Sheriff’s Office, and spent several years as a Strategic Advisor with UTAC, which carries out rigorous drone and ground robotics training events for First Responders at its purpose-built facility.

Plus, of course, there was rarely a conference or industry gathering where Durscher wasn’t a sought-after speaker. He was an absolutely brilliant communicator, breaking down even highly complex processes or concepts into easy to digest narratives. He was, in addition to everything else, a born storyteller.

He was also, to those lucky enough to know him, a friend. InDro’s Scott Simmie, who knew Romeo for many years, reconnected at the AUVSI conference in Florida, where the picture below was taken. It’s followed by an extended interview carried out when Scott was running DroneDJ

Romeo

ROMEO’S TAKE

 

We’ve tried to touch on the highlights, but it’s impossible to capture them all. Anyone in the drone world knows that Romeo’s contributions were immense. But when it came to Romeo’s own assessment of his life, he didn’t focus on career accomplishments as the thing that counted most. It was his connections, his friendships.

When Romeo learned he had terminal cancer, he set up this website. He could have used it to list his many career highlights. He didn’t. It was, and is, rather a celebration of a life well-lived, and of lessons learned. In that spirit, we leave the final words here to Romeo himself.

“I suppose we all have wondered how we would react and what we would do if ever confronted with this sort of challenge,” he wrote. “I’m hoping that by sharing my own journey I can help others understand and appreciate how important it is to live passionately and freely for the moment. Indeed, now so many of even the smallest of incidents and minor pleasures throughout my life come back to me as welcome memories and warm reminders of all the wonderful lives that have intersected with my own….

“I’ve been blessed with so many friends who have cherished me and helped me attain so many goals. I believe and hope I can convince you that pursuing your dreams should be a constant motivation throughout your life. That pursuit — and the experiences you have and people you meet in the process — will give you great gifts that are more precious than any material gains. Of all the things in this world that I’m thankful for, my friendships are at the very top of the list. True wealth is measured by friendship – not money.”

Amen. And Godspeed, Romeo.

I, Robot: The Humanoids are here

I, Robot: The Humanoids are here

By Scott Simmie

 

You might own a robot without even realising it.

Have a Roomba? That’s a robot. And a drone? That’s a flying robot. Even a Tesla, in Full Self-Driving mode, is a robot.

There are a lot of definitions out there – but one we particularly like comes from Maja Matarić, a computer scientist, roboticist and AI researcher at the University of California. In her book, The Robotics Primer, she concisely defines a robot as “an autonomous system which exists in the physical world, can sense its environment, and can act on it to achieve some goals.”

Whether that goal is to vacuum your floor, capture aerial data, or weld a part in a factory, we feel this is a really clear definition. It also doesn’t delineate between platforms: A robot that fits this bill could be stationary, wheeled, a quadruped or even a humanoid.

And it’s that last platform – humanoid – that’s been getting a lot of buzz recently. Numerous companies are now manufacturing robots that resemble human beings in their form factor. And, as it turns out, for very good reasons.

Below: Ameca, a robot built by the UK’s Engineered Arts, is known for its eery ability to mimic human expressions

Ameca robotics AI

WHY HUMANOID?

 

The idea of a humanoid robot has been around for longer than you might think. Leonardo Da Vinci designed – and possibly built – an automaton in the late 15th Century. It’s known currently as Leonardo’s Robot or Leonardo’s Mechanical Knight. According to Wikipedia, “The robot’s design largely consists of a series of pulleys that allow it to mimic human motions. Operational versions of the robot have been reconstructed by multiple researchers after the discovery of Leonardo’s sketches in the 1950s.”

It appears that the purpose of this design was for entertainment (which also fits the definition of a goal), but it fell short when it comes to sensing its environment and autonomy. Still, it’s fascinating to know the Italian inventor turned his attention to designing a mechanical device in human form way back then.

It would take another half a millennia before the first true humanoid robot would be built. In the early 1970s, the Wabot was unveiled in Japan. It was anthropomorphic, with two arms and two legs. It also contained a vision system, audio sensors and could speak in Japanese. According to this overview, “It was estimated that the WABOT-1 has the mental faculty of a one-and-half-year-old child.”

Below: A modern reproduction, based on Leonardo Da Vinci’s sketches, of his “Mechanical Knight” complete with inner mechanisms. It’s followed by an image of Wabot-1 from 1973

Da Vinci humanoid robot
1973 Wabot humanoid

THE HUMAN ADVANTAGE

 

Why create a humanoid in the first place?

Well, there are certain advantages to a human form factor, particularly when it comes to carrying out repetitive tasks in the real world. And the reason? The world around us has been built for humans. If there’s an existing task carried out by people, say pick-and-place, the infrastructure for that task has been created with humans in mind. That means conveyor belts, shelving, cupboards etc. are all designed for the average human. If you build a robot in a human-like form and roughly to scale, that’s a big advantage.

“You don’t need to change the surrounding infrastructure to accommodate the robot,” explains Head of R&D Sales Luke Corbeth.

“The end result obviously is faster deployment. This applies to factories, homes, hospitals, pretty much any use-case. None of these locations need to be robot native to effectively leverage a humanoid robot because they’ve been built for people.”

In fact, humanoid robots have already been deployed on some factory floors. They’re ideally suited to repetitive tasks such as picking up an item and moving it from one location to another – and contain tactile feedback sensors in their manipulators to calculate appropriate grip strength. They could also be deployed, says Corbeth, in environments built for humans – but which may pose hazards. An example, says Corbeth, might be for inspections or maintenance inside a nuclear facility in a radioactive environment.

“There are a lot of dexterous tasks people are doing today that are very challenging to automate because they require high levels of precision,” he says. “These are perfect tasks for humanoids.”

Looking down the road, many foresee an era when humanoids are affordable enough – and capable enough – for deployment in homes. There, they could carry out some of the more mundane household tasks like cleaning or clothes washing, perhaps even elder care and companionship.

A growing number of companies are now in the humanoid space, including Tesla (Optimus), Agility (Digit), Boston Dynamics (Atlas), and Figure (Figure 02). InDro Robotics is a distributor for Unitree, and carries the G1 humanoid and H1 and H1-2 research and development models. (We can also modify these robots for specific use-cases.)

The base version of the G1 sells for $21,600 US – which is surprisingly reasonable for a humanoid form factor. Corbeth says the current offerings are a result of a “perfect storm” across multiple advances in AI compute, battery, sensor and manufacturing technologies. The more advanced H1 sells for $99,600 US and is better suited for complex R&D.

 

WHAT’S NEXT

 

Humanoids are already in the real world. With further and inevitable advances in AI, Machine Vision and Machine Learning (as well as sensors, manipulators, etc.) it’s safe to assume that humanoids will only get smarter and better at smoothly carrying out fully autonomous tasks.

“I think that it will be probably, realistically, three to five years before you see walking humanoid robots around people all the time,” Dr, David Hanson, Founder of Hanson Robotics recently told the South China Morning Post.

“I think we are entering the age of living intelligent machines. It’s coming. Machine consciousness, self-determining machines…it’s on its way. And if we see that happen, then we want to make sure that we make the AI good, compassionate, able to connect and want the best for humans.” Yes, indeed.

And a final note. At some point, these humanoids will be good enough to manufacture themselves. That’s historically been something in the realm of science fiction. However, a recent TechCrunch story pointed out a new partnership between humanoid developers Apptronik and manufacturer Jabril.

“This means that should everything go according to plan, the humanoid robot will eventually be put to work building itself,” says the article.

Below: A C-NET video outlines developments expected in this field in 2025

INDRO’S TAKE

 

Because we sell and modify humanoids in addition to designing and building our own robots (and robots for clients), we’re obviously interested in this space. While we don’t have plans to develop our own humanoid (yet), we are currently working with the Unitree G1 and H1 models to evaluate and enhance their capabilities. And yes, we’ve already sold these to customers.

“Humanoids are a logical progression in robotics,” says InDro Robotics Founder and CEO Philip Reece. “While they’re not the solution for every use-case, they have a clear role in carrying out repetitive or even dangerous tasks that are currently carried out by humans. I suspect, in the not-so-distant future, humanoids will be working alongside people in an ever-increasing number of settings.”

Interested in learning more? Contact us here.

Sense, solve, go: Does Waymo herald the future of autonomous vehicles?

Sense, solve, go: Does Waymo herald the future of autonomous vehicles?

By Scott Simmie

 

During a recent trip to California, I had the opportunity to ride in a Waymo.

I’d certainly read about Alphabet’s autonomous car-for-hire service in the past and work for a company that builds robots and autonomy software. So it seemed a natural, while in San Francisco, to download the app (similar to Uber) and hail an autonomous vehicle.

Within a couple of minutes, a Waymo vehicle arrived at the pickup point – just a short walk from where it had been summoned. It pulled up, LiDARs spinning, waiting for me to climb in. I put a hand on the door; it was locked. A quick glance at the app and I saw an “unlock” feature. Then I was inside.

And then, with some ambient music playing in the background (you have the option to turn it off or select something else), we – meaning the car and I – were off. A display showed a digital representation of what the vehicle was seeing in its surroundings, including parked vehicles and pedestrians. The electric Jaguar quietly accelerated to the speed limit, obeyed all traffic rules, and smoothly adjusted for unexpected occurrences. When the driver of a parked vehicle opened the door to exit, the Waymo liquidly arced a safe distance away. With the steering wheel making smooth turns and constant smaller fine adjustments, it was like being in a vehicle with an invisible, silent driver at the helm.

I had full faith in the technology and actually preferred it to a standard rideshare. Waymo’s safety data (which we’ll explore later) had reassured me the drive was going to be statistically safer than riding with a human driver. Plus, there was no need to engage in small talk. When the ride was done, I simply exited without being prompted for a tip.

I’d been aware of Waymo since it first deployed. I also have a friend with a Tesla who has the Full Self-Driving package. He commutes twice a week from well outside Toronto into the GTA without any inputs beyond setting his destination. He foresees a day, long promised by Elon Musk, when his own vehicle will earn him money by working during off hours as an autonomous taxi.

The technology for fully autonomous vehicles is basically here – arriving both sooner and later than some had predicted. But what does that mean for the future?

Below: A Waymo Driver waits patiently at an intersection – while another Waymo Driver glides past. Photos by Scott Simmie 

SENSE, SOLVE, GO

 

Owned by Google parent company Alphabet, Waymo states “We’re on a mission to be the world’s most trusted driver. Making it safer, more accessible, and more sustainable to get around — without the need for anyone in the driver’s seat.” It calls its service, the app and the car together, Waymo One. The system, the hardware and software, are referred to collectively as Waymo Driver.

Commercial rollout began in Phoenix, Arizona in 2020, with testing in San Francisco commencing late the following year. It’s now also operating in Los Angeles, with expansion into Atlanta, Austin and Miami next. It uses a Jaguar I-PACE electric vehicle as its base, heavily outfitted with an array of sensors. We’re talking a lot of sensors.

In total there are 29 cameras, six radar and five LiDAR units (including a roof-mounted 360° LiDAR). These sensors allow Waymo Driver to fully capture its environment up to three football fields away. Powerful AI, machine vision and machine learning software continuously crunch predictive algorithms allowing Waymo to understand where a pedestrian, cyclist or other vehicle will most likely continue based on current trajectory. And, of course, if one of those moving subjects suddenly does something unexpected/unpredicted, the system quickly readjusts. Waymo touts safety stats (which we’ll explore later) it says proves Waymo Driver is far safer than a human driver.

Waymo boils down the entire process to three words: Sense, solve, go. Waymo Driver senses its environment using the sensors mentioned above (it also has an array of External Audio Receivers – EARs – which alert the system if they detect sirens, etc. It can even echolocate the location of said sirens and will understand if it needs to pull over). The algorithms solve the challenge of safely moving through that environment, including moving objects, and then it’s go time. Those three simple words represent a decade and a half of intense R&D, development of its own sensors, and a huge capital expenditure.

Google first began exploring self-driving vehicles in earnest back in January of 2009. By the time it revealed this publicly, it had already done extensive R&D and testing. But it wasn’t until the fall of 2015 that the first solo member of the public climbed into a Waymo in Austin, Texas and took the vehicle for a ride on city streets. That passenger was Steve Mahan, who is legally blind. It was the first time in 12 years that he’d been alone in a car. It would be another five years before the first rollout to the public.

During that five years, both the car and sensor package – along with the software – evolved considerably. Just compare videos below; the first shows Steve Mahan on that historic trip in 2015, the second is an updated video explaining the fifth-generation Waymo Driver.

SAFETY FIRST

 

 

Waymo could pitch its offering on a number of grounds: Sustainability, convenience, cool factor. But instead, it focuses its customer-facing marketing on safety. Waymo Driver, it says repeatedly, is far safer than a human driver. It has proven that in many millions of miles on the streets, it says, and billions more in simulation.

The statistics Waymo publishes are based on Incidents Per Million Miles (IPMM) of driving – and compare its own rates of incidents with a benchmark of IPMM involving human drivers. Whether it’s airbag deployments, crashes with a reported injury, or incidents where police are notified, Waymo’s stats are consistently a fraction of those involving people at the wheel. In more than 33 million miles of driving, Waymo touts these as the results:

  • 81 per cent fewer airbag deployment crashes
  • 78 per cent fewer injury-causing crashes
  • 62 per cent fewer police-reported crashes

That’s clearly a significant reduction, and to most people would indicate that Waymo is safer than taking a ride with a stranger (or even friend) at the wheel. The statistics include accidents where other drivers were at fault, but does not separate them out – so we can’t actually see what percentage involved an error from the Waymo side. Waymo has previously stated that the majority of these incidents were the fault of human drivers, and that there have been but two accidents involving injuries where it expects to pay out insurance liability claims.

But even rare incidents can quickly become high-profile. In Phoenix, an empty Waymo that had been summoned by a customer crashed at low speed into a telephone pole in an alley. Had a human been at the wheel, we would never have heard of it. But because it was a Waymo, the incident led newscasts. Why is that? Well, we expect perfection in systems like these. And that seems a reasonable expectation if you’re going to trust your personal safety to a driverless car. It just can’t make mistakes. And that’s why Waymo quickly issued a recall for a software fix.

“This is our second voluntary recall,” Katherine Barna, a Waymo spokesperson, told TechCrunch. “This reflects how seriously we take our responsibility to safely deploy our technology and to transparently communicate with the public.”

In May of 2024, the US National Highway Transportation Safety Agency (NHTSA) informed Waymo it was investigating 22 incidents involving its vehicles (and subsequently added an additional nine incidents), stretching back to 2001. Many of those incidents were described by Forbes as “surprisingly minor” and 11 of those incidents were culled by the NHTSA from social media reports of the vehicles driving in an unusual fashion (such as using the oncoming lane to avoid traffic problems). The most serious was the aforementioned pole collision.

We were unable to find any reports of Waymo incidents involving a serious injury. The one fatality involving a Waymo occurred in January of 2025, when an unoccupied stationary Waymo stopped at a traffic light was one of several vehicles hit by a speeding car. One person and a dog died in that incident, but because a Waymo was tangentially involved it made the headlines. It is the only case we can find involving a fully driverless vehicle where a fatality was involved – and in this case the vehicle was completely passive. (There was a pedestrian fatality in 2018 involving an autonomous Uber vehicle. In that incident, which occurred in Tempe, Arizona, a human safety driver was in the driver’s seat. She was watching television on her phone when the accident occurred and subsequently pleaded guilty to endangerment.)

While Waymo has an excellent track record, there have been incidents. But with each incident where Waymo Driver has somehow made the wrong decision, it’s reasonable to assume it was followed by a software fix. And here’s where a fleet of autonomous vehicles have a definite advantage over people: That tweak can be instantly applied to the entire fleet.

Still, there are skeptics who argue that – despite those millions of miles of driverless passenger trips – Waymo does not have enough data upon which to draw sound conclusions.

“We don’t know a lot. We know what Waymo tells us,” Philip Koopman, an expert on autonomous vehicle safety at Carnegie Mellon University, told the Miami Herald. “Basically you are trusting Waymo to do the right thing.”

 

THE FUTURE

 

Autonomy is hard – and it takes time: Google and Alphabet have invested more than 15 years of continuous engineering for Waymo Driver to reach this level of technological maturity.

Now, Waymo is rolling out to more cities. Remember those 672 Jaguars that had the software upgrade? They’re just a fraction of the 20,000 I-Pace vehicles Waymo signed a contract with Jaguar to purchase. Plus, the company recently announced that its six-generation vehicle – a Chinese-made electric minivan – is next up for testing and deployment. From all external appearances, Waymo shows no sign of stopping (except at red lights, of course). In 2024, it carried out four million autonomous rides – four times more than its total of trips over the previous four years. Rides in 2024 tripled to 150,000 per week. And the company calculates “Waymo riders helped avoid over 6 million kilograms of CO2 emissions.”

That’s all great. But for any commercial enterprise, even if it’s willing to absorb costs during rollout, the ultimate test will be the bottom line. Will Waymo prove profitable?

We can’t say for certain – and Waymo’s current financials are somewhat invisible to the public, as they’re bundled in with several other projects Alphabet projects. But some analysts predict Waymo, the clear leader in autonomous rideshare, will ultimately win a significant piece of the market. An analysis on Nasdaq.com predicts Waymo could prove over time to be the jewel in Alphabet’s crown.

“Uber does more than 200 million rides each week,” states the story. “Let’s let that sink in. So if autonomous rides can capture even half that market, that would mean 100 million rides per week…If Waymo can capture about one-third of the $1 trillion autonomous rides market, it could generate annual revenues of around $300 billion.” Enough, suggests the story, to double Alphabet’s stock price.

That’s a big prize. And, clearly, incentive for Alphabet and Waymo to continue on the road to profitability.

 

Below: The LCD display for rear Waymo passengers. Note the option to “pull over” if you unexpectedly need to end your ride early

INDRO’S TAKE

 

Because we’re deeply involved in the autonomous space, we obviously take great interest in Waymo and other deployments of autonomous technologies at scale. Waymo Driver is different from most other applications, though, because it’s transporting human beings. There is very little – if any – room for error.

“We can’t predict the future, but – like algorithms – can make informed predictions with available data,” observes InDro Robotics Founder and CEO Philip Reece. “Waymo appears to be heavily invested in continuously making a good safety record even better – and has the engineering and financial resources to do so. I suspect Waymo, and its competitors, are here to stay.”

For more on Waymo, check out its website. And, if you’re in one of the growing number of cities where it operates, download the app and let Waymo Driver take the wheel.

Wisk promises autonomous Advanced Air Mobility

Wisk promises autonomous Advanced Air Mobility

By Scott Simmie

 

If you’ve been following our posts, you’ll know that InDro Robotics was part of a Canadian trade delegation that visited California last week. Some 40 organisations took part – including private companies, airports, academics, Transport Canada, NAV Canada and the National Research Council Canada. The trip was organised by Canadian Advanced Air Mobility (CAAM), the organization that speaks with a unified voice on behalf of industry and others with a vested stake in the coming world of AAM.

California was chosen because it’s home to three of the leading companies in the Advanced Air Mobility space: Joby, Archer and Wisk. It’s also home to the NASA Ames Research Center – which is working closely with industry on multiple technical issues as the world of AAM approaches. Last week, we shared highlights of our visits at Joby and Archer with this post (which we’d encourage you to read for context).

Today’s post? It’s all about Wisk, the final air taxi company the delegation visited. And its vision?

“Creating a future for air travel that elevates people, communities, and aviation.”

Unlike Joby and Archer – which plan to launch with piloted aircraft – Wisk differentiates itself with its “autonomous-first strategy.” That means, once it has attained all the necessary FAA certifications, the first passengers will climb on board an aircraft that flies itself. An autonomous aircraft carrying human beings? That’s a really big deal.

“When we’re successful at certifying this aircraft, that has the potential to change so much more beyond Wisk,” explained Becky Tanner, the company’s Chief Marketing Officer. In fact, she believes it will have an impact on the broader aviation industry, encouraging it to “take a step forward.”

Wisk is currently flying its sixth-generation full-sized aircraft. Its first generation was autonomous, but the following two were piloted.

“We made the conscious choice from Generation 3 to Gen 4 to stick with autonomous aircraft,” says Chief Technical Officer Jim Tighe. He points to the Generation 6 (which they call “Gen6”) on the floor.

“There will never be a pilot in that aircraft,” he says.

Below: Wisk’s Gen6 – the latest iteration of its autonomous air taxi designed to carry four passengers

 

 

Wisk Gen6 Autonomous Air Taxi

THE DESIGN

 

Like Joby and Archer, Wisk’s basic design is a fixed-wing eVTOL that uses tilt-rotors on booms attached below the wing. Two motors are on each of those six booms. The forward motors have tiltable five-blade rotors that allow them to transition for more efficient forward flight. These motors are in use throughout the flight – takeoff, landing, hover, forward flight – and any other manoeuvres. The rear motors are used for the VTOL portions of flight but are turned off once Gen6 has transitioned to forward flight.

Gen6, as you perhaps guessed, is the sixth full-size aircraft that Wisk has designed and built. And, like Generations 1, 4 and 5 it’s fully autonomous. That feature eliminates the possibility of pilot error.

“It’s obviously a differentiator,” says Tighe. “But we really believe that autonomy will enable safety. These are challenging operations. Short distance flights, you’re doing a lot of takeoffs and landings and you’re doing it in congested airspace.”

Building a completely autonomous aircraft is difficult. But it’s especially challenging – and rewarding – when you have to invent required components.

“When we first started, most of these systems did not exist – so we had to build them ourselves,” CTO Tighe told the Canadian delegation. That included motors, highly optimised batteries, flight control systems and much more. The company now holds 300+ patents globally and has carried out more than 1750 test flights with full-scale aircraft.

“It’s really important to design systems that meet our challenges for design, safety, weight and performance requirements,” he said, adding “It’s a lot easier if you can work on it yourself.”

Tighe, who dresses and speaks casually, comes with an impeccable background. After his first few years working with Boeing as an Aerodynamics Engineer, he worked as Chief Aerodynamicist for 14 years at Scaled Composites. That was the Burt Rutan company known for an incredible number of innovative aircraft and world aerospace records.

But Scaled’s jewel in the crown came right in the midst of Tighe’s tenure. The company designed and built SpaceShipOne and mothership White Knight. SpaceShipOne was a crewed, reusable suborbital rocket-powered aircraft that was carried to 50,000′ AGL while affixed beneath White Knight. When it was released, SpaceShipOne ignited its rocket engine, which took the small aircraft to the edge of space (100km). By accomplishing this feat twice within two weeks, Scaled Composites won the $10M Ansari X Prize. The technology, which includes a feathered system where the wing of the spacecraft rotates for optimal atmospheric entry, is core to the Virgin Galactic space tourism program. Tighe left Scaled Composites in 2014, moving directly to Wisk – a job he describes as “really fun if you’re an engineer.”

Below: The Gen6, which is capable of carrying four passengers of all shapes and sizes, including passengers with mobility issues

 

 

Wisk Gen6

AUTONOMY

 

Autonomy isn’t just about the technology (though we’ll get to that). It’s also part of a strategic business model in a market sector that will undoubtedly be competitive. Both Joby and Archer will initially have piloted models, meaning one of the four seats will be taken by the pilot. That not only costs more (to pay for the pilot), but also means losing revenue for one passenger on every single flight.

But will passengers embrace flying without a human at the controls? Wisk believes so, and says it puts great emphasis on safety. And here, it has some help: Wisk became a fully-owned subsidiary of Boeing in 2023 (though it operates separately). Some 150 Boeing employees are directly involved with the Wisk operation. That relationship, says the Wisk website, “allows us to tap into Boeing’s development, testing and certification expertise, and more.”

And on the autonomy front? In addition to its own inventions, Gen6 relies heavily on tried and true systems like autopilot. It’s self-flying approach includes, according to its website:

  • “Leveraging the same proven technology that accounts for more than 93% of automated pilot functions on today’s commercial flights (autopilots, precision navigation, flight management systems, etc.)
  • “New, innovative technology such as improved detect and avoid capabilities, sensors, and more
  • “Wisk’s logic-driven, procedural-based, decision-making software which provides reliable, deterministic outcomes.”

What’s more, Wisk already has a highly integrated system that allows human flight supervisors to track missions from the ground and monitor aircraft systems. Those flight supervisors will have the ability to intervene remotely, should that ever be required. It’s anticipated that, initially, one supervisor will be responsible for monitoring three missions simultaneously. Wisk offered a simulated demonstration of this system – which already looks pretty mature.

The location the delegation visited was in Mountain View, CA. This Bay Area campus is responsible for engineering, composite assembly, airframe assembly, motors, its battery lab, autonomy lab and is home to the corporate team. In addition, Wisk has additional locations in the US, Canada (Montréal), Poland, Australia and New Zealand. Its flight tests and R&D are carried out in Hollister, CA. The company currently has about 800 employees (including 50 in Montréal).

 

SUSTAINABLE AND ACCESSIBLE

page1image1075603648 page1image1075604000

One of the many impressive things about Wisk was its emphasis on design. Engineers have worked hard to reduce the number of moving parts in the aircraft – points of failure – to the point where there no single mechanical or software problem could take the aircraft out of the sky. But equally impressive was its commitment to design.

Beyond ensuring everything is comfortable, ergonomic and safe for passengers – a great deal of work has gone into ensuring any Wisk aircraft will be accessible for people of all shapes and sizes and even with disabilities. Wisk has an ongoing program where civilians with physical or sensory limitations are brought into the lab to try out the latest iteration of the cabin and offer feedback for improvement. For example, there’s Braille in the cabin and on the flight safety cards. And, when it was discovered that a guide dog was fearful of the metal steps for climbing up and into the cabin – they redesigned them to be easier on the paws. The guide dog happily climbed aboard the redesigned steps on a subsequent visit.

In conjunction with making the service affordable, this philosophy is something Wisk emphasised during the visit.

“The big vision of this is to have this accessible for everyone,” said CMO Becky Tanner. “Making sure this feels comfortable and enjoyable and safe for all kinds of people – people with disabilities, people with different heights, shapes and sizes.”

Below: InDro’s Scott Simmie (front right) inside Gen6. InDro’s Dr. Eric Saczuk, who was attending on behalf of BCIT’s RPAS Hub (which he directs) is in the seat behind him. Dr. Saczuk is also InDro’s Chief of Flight Operations

 

Scott and Eric on Wisk Gen6

INDRO’S TAKE

 

Before we get into our view of this world, it’s also worth mentioning that the delegation had the privilege of touring the NASA Ames Research Center. We saw, among other things, a high-end simulator purpose-built for testing eVTOL flight in congested urban airspace – as well as top-level research into developing predictive models for turbulence at the coming vertiports – where these vehicles will takeoff and land.

“The worlds of Advanced Air Mobility and Urban Air Mobility are definitely coming. This is truly going to be an inflection point in aviation, and we foresee many positive use-case scenarios beyond air taxis that these technologies will enable,” says InDro Robotics Founder and CEO Philip Reece.

“It was highly instructive to get a front-row seat with these industry leaders, and we thank CAAM for its foresight in planning and executing this important trip. InDro will have some announcements of its own for the AAM space – both for service provision and more – down the road.”

We look forward to these companies gaining their final FAA Certifications – and seeing these aircraft carry passengers and eventually cargo.

Canadian delegation sees the coming future of Air Taxis and Advanced Air Mobility

Canadian delegation sees the coming future of Air Taxis and Advanced Air Mobility

By Scott Simmie

 

It’s one thing to hear all the buzz about Advanced Air Mobility. It’s quite something else to see it.

A Canadian delegation representing some 40 organisations (including private companies, academia, airports, Transport Canada, NAV Canada and the National Research Council) is currently in the midst of a trade mission to California, visiting leaders in the AAM space. The trade mission was organised by Canadian Advanced Air Mobility (CAAM) – the organization that speaks with a unified voice on behalf of the emerging industry in Canada.

The coming world of Advanced Air Mobility will mark a huge inflection point in the world of aviation, especially in urban centres. Sustainable and transformational aircraft that use batteries or hydrogen as a fuel source will transport people and critical supplies over large urban areas and to nearby regions that are currently underserved by traditional aviation. They takeoff and land vertically, meaning they don’t require runways. Most designs transition to forward flight and incorporate a fixed wing for greater efficiency and range. Use-cases could include transporting patients, organs and medicines between hospitals, or delivering critical supplies in a disaster scenario.

But perhaps the biggest immediate market – and one you’ve undoubtedly heard of – is for these vehicles to serve as air taxis. Let’s say you’re downtown in a big congested city like New York, LA or Toronto. You need to get to the airport, but don’t want to spend 60-90 minutes in traffic. Three large companies in California – Joby Aviation Inc., Archer Aviation, and Wisk are leading the industry. And they are laser-focussed on this particular market sector.

All three envision a scenario similar to this in your future: Using an app on your phone, you’ll one day be able to book both a car rideshare and a flight at the same time. The car will drop you at the nearest vertiport, where an air taxi will await you and several other passengers. You’ll climb in, stow your luggage, and head to the airport (or some other popular high-volume destination). The companies predict after the market settles you’ll pay about the same as an Uber X for the privilege, but will reach your destination in a fraction of the time.

And time, says Joby’s lead on Corporate Development and Partnerships, is ultimately the key value proposition.

“(Joby has a) Deep alignment to sustainably give people time back – to spend it with the people who matter most,” Vinay Patel told the trade mission at the start of its tour on Tuesday.

And, as the delegation saw, Joby appears to have the technology to do precisely that.

Below: The CAAM-led delegation watches a Joby demonstration flight. Image courtesy of Joby via LinkedIn

Joby CAAM demo, Joby image

JOBY

 

Joby was the first stop for the Canadian trade delegation. All members of the mission signed NDAs, so there’s a limit to what we can reveal here. What we can say – and this applies to all three companies – is that the hype is real. Though there are still FAA certification hurdles to overcome and production to scale, these aircraft are indeed transformative and will someday change both our skies – and our experience of flying. Depending on your city and your destination, spending precious time in gridlock could become a distant memory.

One of Joby’s big selling points – in addition to the convenience and efficiency – is that these aircraft are quiet. When in forward flight, the company says tests have shown the sound pressure level is basically equivalent to a background conversation. During the demonstration, the aircraft took off vertically and went into hover for some specific manoeuvres. Vertical takeoff and landing are the loudest phase of flight.

During the demonstration, the aircraft was – and we’re giving you our best guess here – about 125 metres away. An Apple Watch registered a mere 73 decibels at peak, followed by a steady 67 dBa at hover. Plus, the aircraft did not have the unpleasant whine that often characterises multi-rotor vehicles. Joby and the other companies visited have all put a great emphasis (and countless engineering hours) into reducing the noise level of these aircraft. It’s something they know is an important factor for public acceptance, especially with plans for frequent flights in urban settings. Noise, based on this demo, will not be an issue when these roll out.

 

SOME COOL STUFF

 

There was no shortage of that. But a few things at Joby really stood out. The company is highly vertically integrated – meaning it manufactures nearly everything that goes into its aircraft. This allows it to, obviously, manufacture to its own specs and its own quality control standards. We were able to handle pieces of several 3D printed metal parts – which were unbelievably light. Keeping down weight, of course, extends both range and increases payload capacity – both of which are priorities.

“What makes Joby special is the vertical integration,” said Founder and CEO JoeBen Bevirt. “We’re leveraging the incredible advances in technology…to build dramatically more performant eVTOLs.”

The aircraft fuselage is made with composites, and automation is a factor whenever possible in its Pilot Production Plant in Marina, CA (a massive plant, capable of producing 500 aircraft per year, is being built in Dayton, Ohio). Though some parts are laid up by hand, the company uses specialised industrial arms to lay down pre-impregnated composite materials to extremely high tolerances. These robots are called AFP – Automatic Fibre Placement machines. Once the multiple layers have been precisely placed, the part is moved on its jig into a high-temperature autoclave that bakes it under pressure for many hours to ensure everything fuses to maximum strength. Ultrasonic testing is completed on these parts to ensure uniform quality and zero flaws.

There’s more. So much more. But Joby’s pilot factory, designed with the assistance of Toyota engineers (Toyota is a major Joby investor) appeared to be a model of efficiency. The company is expanding its production space at this location by another 225,000 square feet – to meet demand prior to that massive Ohio facility getting online. The company’s Integrated Test Lab links a simulator to a separate room where every single component of the aircraft is activated in real-time in response to inputs for testing and data acquisition and validation. It’s known as an “Iron Bird” – because it’s just the components and not the actual aircraft and does not fly. But wow, does it ever produce valuable data. Engineers can also throw faults its way to see how the system responds. 

If you look far to the future, said CEO Bevirt, air taxis are likely just the beginning of the transformation that will result from aircraft like these. They will connect regions that currently are underserved – or not served at all – by traditional aviation. And the technology advances? They, too, are predicted to have a much larger and positive impact on the broader aviation industry. New battery and charging technologies, new avionics, hydrogen fuel – these are all major disruptors, he says.

“This is just the tip of the iceberg,” he told the crowd.

Below: Joby isn’t the only company using an Iron Bird. Wisk also uses an Iron Bird for testing and improving the components and performance of its aircraft

ARCHER

 

The next stop, Wednesday, was a tour of the Archer facilities in San Jose. Like Joby, it’s well capitalised and on the cusp of a huge expansion. In December, it cut the ribbon on its new 400,000 square foot manufacturing plant in Covington, Georgia. Tooling load-in is underway, and by the end of the year the facility is scheduled to produce two aircraft per month. By 2030, that number is projected to be 650 aircraft per year.

Archer’s secret sauce is its proprietary electric motors. It is not chasing the vertical integration that is a hallmark of Joby, but instead purchases components it needs from manufacturers that already have these parts in FAA certified aircraft. It has partnerships with established companies like Honeywell, Safran and more. What’s unique in its path, said its head of Strategy and Business Development, is that “there are no science projects.”

MIDNIGHT

 

Its aircraft, called Midnight, has a total of 12 motors. Six sit on booms forward of the fixed wing and are tiltable for VTOL and forward flight. Six motors on the same booms but aft of the wing are fixed and used only for the VTOL portion of flight. Midnight logged some 400 flights in 2024 and flies pretty much every single day out of Salinas, CA.

The company has put a great deal of engineering into its battery technology, including thermal and electronic failsafes to either prevent or mitigate a thermal runaway. Each battery runs two diagonally opposed motors. So in the unlikely event of a battery failure, losing those two motors would still allow the aircraft to fly in a balanced mode.

Like all of these companies, full FAA certification is complex and will take time. But Archer is working closely with the General Civil Aviation Authority (GCAA) of United Arab Emirates. It has plans on the table to begin flights of Midnight in Abu Dhabi by the end of 2025, and hopes for FAA Type Certification in 2026.

Below: The Canadian Trade Delegation prepares to enter Archer’s lab, followed by an image of Midnight on a display in Archer’s lobby

INDRO’S TAKE

 

InDro will definitely be part of the coming world of Advanced Air Mobility, and has done extensive research in this area, including collaborations with the National Research Council, telcos, and academia. We have laid much of the groundwork for safe BVLOS flight in mixed airspace and will be delivering medical and other critical supplies – both in urban areas and also to under-serviced regions down the road. We obviously have no plans to build an air taxi, but will be deploying drones with heavy lift and extended range capacities. Seeing these companies in California really helped solidify what this future is going to look like, and we embrace it.

“Building companies like these takes immense capital, engineering, and vision. InDro congratulates Joby, Archer and Wisk and looks forward to their deployment,” says InDro Founder and CEO Philip Reece.

“We also have concepts underway that will leverage our extensive experience in autonomous ground robots – which we believe will lead to products that could further aid efficiencies for companies like these. We look forward to revealing them down the road. We also thank the team at CAAM for putting together this valuable trade mission.”

Stay tuned. You’ll hear more about Wisk – and the NASA AMES Research Center – next week.