#CANSEC2022 – a wrap on the biggest security and defence show in Canada

#CANSEC2022 – a wrap on the biggest security and defence show in Canada

By Scott Simmie, InDro Robotics

 

The biggest annual security and defence conference in Canada – CANSEC – is a wrap. Put on by the Canadian Association of Defence and Security Industries, the trade show is like a Who’s Who of the vast supply chain necessary to keep Canada’s armed forces equipped.

That means everything from the pointy end of the stick (weaponry) through to advanced SCUBA gear, survival suits, radar units, flight simulators and more. Major companies like Lockheed Martin, L3Harris, QINETIQ, Google, Microsoft and others were among the 306 defence and security exhibitors that filled some 150,000 square feet on the trade floor.

It was clear (if it wasn’t before) that digital technologies play a huge role on the modern battlefield. Plus, there was a lot of hardware like this:

 

 CANSEC

There was also this guy, who spent his time in icy-cold water intended to show off the capabilities of the company’s survival suit. See that glove on the right? People attending the show were invited to plunge their hands in that frigid water with and without the glove on.

Trust us on this, it’s more comfortable with the glove.

CANSEC

Weaponized drone

 

On the drone front, there was a significant development. Norwegian drone maker GRIFF Aviation, known for its heavy-lift Enterprise drones, was displaying a variant of one of its models. In conjunction with Norwegian munitions manufacturer and defence firm Nammo, the two companies have outfitted the GRIFF 135 (payload capacity 30kg) to fire anti-tank rockets. This was the first time this machine has been publicly displayed.

CANSEC

And here’s a look at the business end of things:

CANSEC

Ukraine influence?

 

There has been a huge demand for drones since the Russian invasion of Ukraine. But that conflict played no role in the development of this machine.

“This is not something we came up with because of Ukraine,” says Geir Furø, GRIFF Aviation’s VP of Sales and Business Development.

“It’s been in the planning for the last four or five years. Only in the last year has it been coming together. So this will have a live-fire test later this fall. We hope to be manufacturing by early next year.”

 While InDro Robotics does not weaponize its drones or robots, we can certainly see the business case for GRIFF Aviation. What we found most interesting about this development is that drone manufacturers have typically followed either an Enterprise/Consumer track, or else a military one. In general, companies that are defence contractors (such as Aerovironment) don’t produce Enterprise/Consumer drones, and vice-versa. 

Furø said there had been a lot of interest in the product. It will be interesting to see whether this crossover leads other Enterprise manufacturers to consider adapting their products for a combat setting.

Submersibles

A couple of other displays caught our eye, as well. In the case we’re about to explore, Canadian companies that build submersible devices. These are tethered systems that, in general, send back high-quality real-time video and other data to the surface (they can be equipped with multiple sensors). Use-case scenarios include hull inspection, sediment sampling, and even retrieval of objects on the ocean bed. First Responders also use these devices when attempting to locate human remains following drownings, boat sinkings etc., keeping divers out of harm’s way.

Two different Canadian companies had displays at the CANSEC show, both offering submersible solutions.

MarineNav

 

Established in 2005, the company is based in Prince Edward Island – which has some obvious advantages when it comes to R&D and testing its products. It builds underwater Remote Operated Vehicles (ROVs), marine-grade computers, displays etc. Its Oceanus series has been deployed in use-cases ranging from border security and environmental assessment through to scientific research. MarineNav ROVs are built on-site, using rugged plastics and marine-grade anodized aluminum.

Its three models use thrust vectoring for positioning and can carry out unlimited mission times, since power is supplied via tether.

OceanUS

Range

 

The Oceanus Pro, seen above, has a depth rating of 305m (1000′). It’s controlled from the surface using a joystick and touch-sensitive topside monitor. That monitor has 1600 nits of brightness, meaning it’s easy to view even in bright daylight. The company’s Oceanus Ultimate has the same depth rating, but with an optional upgrade can descend to 500m (1640′).

We had the opportunity to chat with MarineNav staff and were impressed with both their commitment to quality, as well as the fact their line is manufactured from the ground-up, in-house.

 

Deep Trekker

 

The other company that caught our attention was Deep Trekker, based in Kitchener, Ontario. Deep Trekker has been around for a decade, and produces not only submersibles but also waterproof crawlers, designed for pipe inspections – even a vacuum robot that can clean sediment and sludge from the bottoms of reservoirs and tanks.

When we were recently at the AUVSI conference, we had an opportunity to operate its DTG3, a highly maneuverable and affordable ROV rated for up to 200m. Impressive, and just one of many machines for specific use-case scenarios.

Deep Trekker

In fact, Deep Trekker offers not only a broad range of products, but – not unlike drones – the option for additional sensors suitable to tasks such as Side Scan Sonar, water sampling, and even Non-Destructive Testing (NDT) tools.

 

InDro on the floor

We’d be remiss if we didn’t mention that InDro Robotics also had a presence at the show. That’s our own Peter King on the right, taking part in a demonstration with partners Microsoft Canada.

Peter was remotely operating our Sentinel robot, equipped with the InDro Commander system, over a 5G network. This was on day two of the conference (you’ll see Sentinel below). The previous day, we piloted a drone from the CANSEC show, with the drone many kilometres away at our Area X.O R&D hub.

InDro is a leader in teleoperating drones and robots over 4G and 5G networks, allowing for remote operations from around the block or across the country.

The operator monitors the mission via a web-based browser, seeing data in real-time as the mission unfolds.

Peter is a pro at this, as well as understanding the many use-cases that can benefit from such technology. For example, InDro Robotics can remotely inspect a solar farm to see if there are any malfunctioning panels. Having a human inspect those panels can literally take days, while generally a single drone flight of less than 30 minutes can usually detect any anomalies.

Interested? You can always reach Peter here.

CANSEC
CANSEC

InDro’s Take

 

Conferences are a great opportunity to gain a better understanding of a particular sector, as well as a chance to see what other companies are up to in that space.

We had conversations with many companies at CANSEC and were particularly impressed with several Canadian SMEs. Deep Trekker and MarineNav have both developed very impressive products, and – as a fellow R&D company – we applaud Canadian success stories that push the boundaries of engineering. Well done.

Freefly gets on Blue sUAS, shows off hybrid drone @AUVSI XPONENTIAL

Freefly gets on Blue sUAS, shows off hybrid drone @AUVSI XPONENTIAL

Freefly systems has news – and cause to celebrate.

The company’s Alta X drone platform has been elevated to a very desirable status.

“Our Alta X was approved for the Defense Innovation Unit’s Blue sUAS list, which is huge for us,” says Freefly Chief Technical Officer Max Tubman. The ‘list’ is a small collection of drones that have been vetted for cybersecurity and components to ensure it meets the standards of the federal National Defense Authorization Act. It’s also seen as kind of an approved list of drones for purchase by the Department of Defense and many federal agencies using federal dollars for their spend.

“Going through the DIU process, basically has a third party validate all of your claims,” says Tubman. “They look at your supply chain, build material, operations, make sure your drones are secure from a cybersecurity standpoint. It allows federal agencies and private companies to know they’re buying an approved drone. And certain government agencies require that.”

Tubman says the company has already seen a significant boost in sales. What’s more, the company’s Astro drone is in the queue for the next round of potential approvals.

“It’s a big boon, yes. There are certain federal agencies that have just been waiting to replace fleets of aircraft so it will unlock at lot for them.”

That’s Tubman below, looking justifiably happy beside the Astro.

UAS

Hybrid en route

 

While the Blue sUAS news is big for Freefly, there’s some other big news in the wings. A new drone was on the floor, and it’s a marked departure from previous Freefly offerings. It’s a hybrid drone, using a gas-powered engine to generate power. And that’s a big deal.

“It has a four kilowatt, fuel-injected engine which allows you to fly for much longer time. We’re looking at LiDar payloads in the 10-12 pound range and flight times of 2-1/2 hours while remaining under 55 pounds.”

That’s something. Here’s a look at the Hybrid Hawk, which will likely be on the market by the end of the year.

 

Pegasus

The hybrid advantage

 

If you follow drones, you’ll know that the flight time for that kind of payload is pretty awesome. But what’s the secret sauce? The answer is that while lithium polymer batteries are great – they’re no match for the energy-to-weight ratio of gasoline (and this is actually a multi-fuel machine). It’s even better and more easy to deploy, says Tubman, than hydrogen fuel cell machines.

“It’s much easier and accessible than a hydrogen fuel cell,” says Tubman. “Hydrogen has a high energy density but a low power density, whereas gasoline has both a high energy density and high power density compared to a fuel cell.”

 

A Canadian Connection

 

While Freefly is a US company, there was a collaboration with a Canadian company to get this machine made. The motor/generator combo was designed and fabricated by Pegasus Aeronautics, a company based in Waterloo, Ontario. Two of the Pegasus guys are in the photo above, with one holding the engine. Here’s a closer look at that powerplant.

sUAS

Use-cases

 

Obviously, this kind of range has its advantages for inspection, surveillance and more. But it’s also hugely advantageous in remote regions where operators might not have access to power. What’s more convenient? Packing in thousands of dollars worth of charged batteries for a major job, or taking in a jerry can of gasoline?

“Having to haul batteries out into the field is basically a non-starter for a lot of these applications,” says Pegasus CEO and founder Matt McRoberts. “The ability to refuel a UAV and put it in the air and have it do useful work is important.”

And, for the geeks among us, here’s more about the advantage.

“The intention is that we take gasoline and use that as an energy storage method, which we can then transform to electricity,” he says. “As a consequence of gasoline having 40-50 times the gravimetric energy density as LiPo batteries, these types of systems can stay in the air much longer, up to eight to 12 times as long, depending on the application.” 

Cool. So why aren’t we seeing tons of drones using gasoline to create electricity and extend flight times? Well, there are others – but not that many. And the answer, quite simply, is that extracting that efficiency to its fullest potential is no easy task.

UAS
“The process of turning gasoline into useful energy is very challenging across the board,” says McRoberts. “We had to develop in-house fuel injection systems, power management systems that work in concert with one another in order to make a system that is well-optimised, efficient and – most important – easy to use.”

What’s more, the Hybrid Hawk has software designed for BVLOS flight, including continuous monitoring of telemetry, motor health, power output and more. You can even start the engine remotely.

The motor’s spec sheet reveals that it’s a two-stroke, liquid-cooled cylinder. Other specs include:

  • Four kilowatt power output
  • Operational voltage from 24 thru 50V
  • CAN, Serial, redundant PWM signals interface protocols
  • Automatic throttle control
  • Operation times before overhaul: 200 hours
  • Ingress Protection: Up to IP67

There’s more there, too, if you read the fine print. Kudos to the engineers at Pegasus for pulling this together. It’s certainly no small task to build something like this.

 

InDro’s Take

 

We can certainly envision the use-case scenarios for a UAS like this. The range and payload capacities open up a very wide door, particularly in remote and harsh environments where charging is not available, or the job is a big one. There’s a lot more efficiency in sending a drone up once for a large photogrammetry/data acquisition project, rather than doing it in bits and pieces. We also see great potential for deliveries beyond the range of most LiPo powered drones. And even on a very long delivery, it’s a simple task for people at the other end to refuel with standard gasoline (mixed with oil, of course), rather than ensuring charged batteries are awaiting for the return trip.

We look forward to seeing this drone get out of the gate, into production, and into real-world applications.

Steerable drone/cargo chutes from AVSS gain interest @AUVSI’s XPONENTIAL

Steerable drone/cargo chutes from AVSS gain interest @AUVSI’s XPONENTIAL

A Canadian company, well-known for its drone parachute systems, has a new and innovative product. It’s a steerable parachute that can drop cargo – or even a drone with a technical malfunction – where you want it to go.

The company is called AVSS (Aerial Vehicle Safety Solutions) and it was founded in 2017.

“AVSS is a parachute recovery system. We build parachutes for DJI products as well as special integrations. We are a spring-based product, we don’t use a pyrotechnic solution,” explains Mariah Murray, VP of Operations with AVSS.

The pod-like systems are built to integrate with more expensive DJI drones, as well as some other custom integrations. You can see a pod integrated on the top of this DJI industrial drone.

Steerable Drone

How does it work?

 

Well, there’s a fair bit of technology packed into the standard, non-steerable chutes (we’ll get to steerable in a moment). Each one is custom-tuned to know when something has gone wrong with a specific drone.

According to AVSS CEO Josh Ogden, the chutes deploy if a drone “breaches certain thresholds of the drone’s regular flight parameters.” For example, if the drone suddenly rolls or pitches at angles exceeding what the drone is capable of in normal flight, algorithms trigger the system to deploy. A minute time-delay is built-in to ensure it’s a genuine problem and not a brief anomaly.

“Some time delays to prevent false deployment,” says Ogden, adding that AVSS generally works in concert with drone manufacturers in order to “know what failure looks like.”

The systems are not inexpensive – but nor are the drones they’re designed for. For DJI’s M300, a system is $3600 and $1900 for the Mavic 3 (though there are lower price points.) But, wow, at the moment you need it you’ll be happy the system is there.

“As a parachute company, we’re there to exist, but no one needs to know we exist,” says Ogden. “It’s like an airbag in your car – you only know when your drone has failed.”

 

Mavic Pro

Steerable chutes

 

AVSS also recently launched its latest product, a steerable chute that can be used for cargo or the salvation of an errant drone. It’s called the Parachute Precision Guidance System, or PPGS.

With cargo, you pre-program the GPS coordinates where you want the package to land. You drop it as close to the desired landing location as possible, and servos adjust the chute’s control lines during descent.

“We have servos pulling the lines, so it’s like a paraglider,” says Ogden. The software is thinking “this is home point, I need to get there. It’s trying to navigate.”

And navigate it does. AVSS says the guided drops will consistently land within a few metres of the target. Here’s a look at that steerable chute package, along with a remote with a giant red button if you need to manually deploy.

Ogden says it’s intended for urgent missions.

“This is military re-supply, I’ve got to get ammo to a front line, or blood to someone who is about to die. Critical missions.”

 

Ontario trials

 

The system has also been tested in northern Ontario, and there’s an InDro Robotics angle. We supplied a Wayfinder heavy-lift drone to drop cargo with a steerable chute to a First Nations community in Ear Falls.

“Looking at using drones to deliver critial supplies to the First Nations community,” says Ogden. “This is opening up another critical medial delivery to those communities. Some existing drone delivery companies require really expensive infrastructure. That’s not affordable. This basically enables life-saving, mission critical items.”

Steerable Drones

Real world testing

 

These chute systems go through an arduous testing phase before they’re released to the public. AVSS parachutes meet the rigid ASTM F3322 standards, and the company is close to having integrations for 10 different drones completed. It tests at the UAS NUAIR testing site. And yes, they have to do a lot of deployments.

“We have to crash the drone at NUAIR over 45 times,” says Ogden. “There’s a new standard coming, and then I think we have to crash 65 times. “

Some 100 units of the steerable chute have been purchased by the Canadian Armed Forces. And AVSS is already working plans for using steerable chutes for drones – with programming to avoid landing, for example, on a busy highway.

“We envision, our future of drone parachutes, is guided parachutes that can land the drone in a safe spot,” says Ogden. “When my drone fails, I want to ensure that it doesn’t drift into traffic. Guided parachutes are the future of drone parachutes, especially for drone delivery and urban missions.”

FYI that’s Josh on the left, Mariah on the right.

 

Steerable Drone

InDro’s Take

 

We’re big fans of AVSS. The company identified a gap in the marketplace and developed a well-engineered solution. The steerable chutes are already finding a market, and will ensure that critical goods get where they’re needed, when they’re needed, minimizing the risk of drift or entanglement with trees or other structures. Smart. We also really like the concept of a steerable chute that will ensure a drone will land somewhere safe.

We look forward to seeing where AVSS goes from here.

 

New heavy-lift autogyro grabs attention @AUVSI

New heavy-lift autogyro grabs attention @AUVSI

We had barely got onto the XPONENTIAL trade floor in Orlando before something really caught our attention. Part of the reason was because it was big. But it was also very different.

It’s an entirely new type of VTOL drone that uses an autogyro-type system for lift. The drone is called ATLIS, and it’s billed as a long-range, heavy lift VTOL cargo UAV. It’s built by a Florida company called Aergility, which has previously successfully tested scale models of this design.

“We flew our first 1:4 scale model about four years ago,” says Brian Vander Mey, Aergility’s Director of Sales and Marketing. “Then we built a 30 per cent scale model, and this is the debut of our full-scale model. This is our third generation.”

Take a look at this thing. It’s quite something:

VTOL cargo UAV

The Aergility ATLIS has a claimed range of 300 miles (480 km) with a payload of 500 pounds (227 kg). The company says it’s been designed for dropping critical supplies to disaster areas, hostile environments, and more.

“We want to be in places that have limited, damaged infrastructure or uavailable infrastructure,” says Brian Vander Mey, Aergility’s Director of Sales and Marketing.

“That would be anything from 400,000 villages in Africa, to oil platforms, to military applications where it costs $1,000 per litre to deliver water into the field.”

 

A VTOL with autogyro

 

This drone has quite an unusual design. Forward thrust is carried out by a multi-fuel turboprop engine. You can get a closer look at the front end here:

Cargo Drone

The back end, meanwhile, opens up much like a military cargo aircraft. This enables rapid loading and unloading, which is a major factor in a critical situation.

Cargo Drone

Takeoff, transition, autogyro

 

The ATLIS features a total of seven propellors and motors. The fuel engine is the one you saw previously, and is responsible for thrust in forward flight. In addition, ATLIS has six other motors that function both for vertical takeoff and landing (VTOL), like a quadcopter.

But during the transition to forward flight, the power to those VTOL rotors is gradually decreased to zero. Airflow starts to move those props of its own accord – meaning they begin to auto-rotate simply due to forward motion through air. Once they reach a sufficient speed, they provide lift just like a wing.

But these motors can also be controlled – slowed down on one side or the other (or front to back) by regenerative braking. The power generated during that braking process is transferred to the rotors on the opposite side of the aircraft, increasing their speed. Doing this gives the pilot authority over yaw, pitch and roll.

“So if you want to bank, you add power to rotors on one side by generating and drawing power from rotors on the opposite side,” says Vander Mey. “The net is that zero power has been used.

“The aircraft is remarkably simple. There are no ailerons, it’s just rotors.”

Here’s a better explanation, followed by a shot of one of those combination VTOL/autogyro rotors.

 

ATLIS
ATLIS Cargo Drone

Getting ready for flight

 

The ATLIS on display has not yet flown. But it’s not a mockup (something that occasionally plagues trade shows). The carbon fuselage is the real deal, but final integration of components has not yet been done. The company has successfully flown a 1:3 scale version, and will take ATLIS to the air by the end of summer.

“There’s going to be an extensive certification process. The first thing is to get the aircraft in good shape and ready for production,” says Vander Mey. “So we are going to be doing our initial flight testing for this aircraft in late summer, and we’re targeting having production units available 18-24 months from now.”

Cargo Drone

Scale model in flight

 

As mentioned, Aergility has previously produced scale models of this drone. You’ll see in this video that roll, pitch and yaw have all been achieved despite no airelons. Of course, multi-rotors do this as well – but standard quadcopters continuously supply power to all rotors. The ATLIS does not, once in full forward flight. And when inputs are required, it puts the brakes on some rotors, generating the power required to speed up opposing rotors.

This strikes us as new. Aergility appears to have been successful with its prototype:

InDro’s Take

 

This unusual design caught our eye. If Aergility can successfully get its full-scale version through certification, it will certainly find a market. The ability to move 500 pounds of cargo 300 miles in a VTOL-style aircraft is very significant, and we can foresee many humanitarian and emergency use-cases, as well as just routine deliveries to remote communities.

We’re also intrigued by the autogyro aspect, and the ability to change autogyro speeds for flight inputs (what Aergility calls “Managed Autorotation Technology” or MAT). ATLIS does not require tilting motors or variable pitch rotors; we’d love to see this sytem in action.

We wish Aergility the best in test flights, certification, and bringing this product to market. A drone like this, if successful, will certainly fill a void.

 

CONTACT

INDRO ROBOTICS
305, 31 Bastion Square,
Victoria, BC, V8W 1J1

P: 1-844-GOINDRO
(1-844-464-6376)

E: Info@InDroRobotics.com

copyright 2022 © InDro Robotics all rights reserved

Indro Robotics at AUVSI’s XPONENTIAL show

Indro Robotics at AUVSI’s XPONENTIAL show

Welcome to the Greatest Show on Earth, or at least the biggest when it comes to drones and robots.

The Association for Uncrewed Vehicles Systems International (AUVSI) is back with a full-scale, in-person XPONENTIAL show for the first time since the global pandemic. With members in more than 60 countries – and an ever-increasing number of companies offering products – this is considered the event to attend. The trade floor, when it opens April 26, will showcase products from the world’s largest manufacturers…right through to some of the smallest.

Only exhibitors were allowed in today, setting up their displays. You can get a tiny glimpse of the floor in the background in the following shot. And that woman with the yellow tie? She means business. No one on the floor without an exhibitor’s pass. Don’t even ask.

XPonential

As usual, there were some smaller educational seminars and panels on a day when a lot of people were still registering. To give you a sense of scale, check out how large the registration area is. Given that it takes only about a minute to get your pass, maximum, this is massive.

XPONENTIAL

Sessions

 

We took in a few sessions today, just to get warmed up for the main event. A couple of them had some pretty interesting little nuggets.

For example, there was a panel called “When does a vehicle become the driver?” which raised some intriguing points we hadn’t considered. For example, disability activists are keen to have a voice at the table for autonomous vehicles due to the obvious advantages they will provide for those unable to drive a regular car. Wiley Deck, the VP of Government Affairs and Public Policy with the autonomous trucking firm Plus, said he’s heard many with disabilities say “‘We want to be in at the front door, and we think we deserve that’.”

Makes sense. And, arguably, autonomous vehicles might be a boon for elderly people whose decision-making skills and reaction times have diminished with age. But when it comes to legislation, that raises another question.

“Fewer and fewer people will be human drivers,” said Kelly Bartlett, a Connected and Automated Vehicle Specialist with the Michigan Department of Transport (and a guy who thinks about laws a lot).

 “We’ve got to decide, who is that person? Maybe it’s a Level 4 or Level 5 (autonomous vehicle). Who is that person? Do they have to know traffic laws, for example?”

Interesting question, and one Barlett said will have to be tackled by legislators at some point in the future.

 

Autonomous trucking will take time

 

One of the other striking things from the panel, considering the capabilities of vehicles like those from Tesla, is that the world of autonomous long-haul trucking isn’t coming anytime soon.

If the route were a simple A-B, things would be easier. But the reality, said panelists, is that most of the millions of trucks hitting the road daily in the US have complex routes. They need to stop for fuel or, in the future, for charging. They need to cross states that have different laws. And, just as there are concerns with drones conflicting with traditional aviation, regulators and the public will need to be satisfied these vehicles are truly safer – and in all scenarios.

For example: What would happen if a front steering tire of an autonomous truck blew out at highway speeds? We don’t actually know yet, though at some point such tests will be carried out on tracks. Think of how many scenarios might be involved – how does an autonomous vehicle react to an oil slick? When being towed?

Lots to think about. Speaking of which, when do you predict autonomous trucks will be ubiquitous? Five years? Ten?

According to the panel, you’d be premature.

“It’s decades away,” said Wiley Deck. “If you’re entering the industry now, you’ll be able to retire as a trucker.”

There was also an amazing story about one of the first autonomous vehicle demonstrations, way back in 1925. Too long to go into here, but there’s a fascinating read here, if you’re inclined. It even involves Houdini.

 

Blue sUAS

 

You may have heard of Blue sUAS. It’s a list of drones that have been vetted by a Department of Defense branch called the Defense Innovation Unit to comply with the National Defense Authorization Act in the United States. You might think of them as an “approved” list of non-weaponised drones for use by the military, or those using federal funds. Drones using major components manufactured in China are excluded, including DJI. There are also fairly rigid cybersecurity hurdles the drones must pass.

But that has led to some confusion – and concern among organizations that cannot afford the vetted drones. Shelby Ochs, seen in the next photo, is the Program Manager, Autonomy, with the Defense Innovation Unit. They’re the folks that vetted the first list of Blue sUAS drones. At the moment, that list contains eight drones, listed here.

 

AUVSI

Problem is, when the Defense Innovation Unit first came out with its initial list of Blue sUAS, many people in government, law enforcement, and – albeit rarely – some commercial companies, believed these were the only drones they could purchase.

“People thought this was a prescriptive list,” says Ochs. “So there were a lot of agencies in the federal government who said: ‘If they’re good enough for the Department of Defense, they’re good enough for us, too.'”

That, in his opinion, was a mistake. And he emphasized the following point multiple times during his presentation. In fact, he said it at least three times:

“Any company can sell any drone to any organization, so long as it meets their administrative requirements.”

So that cleared things up. Also of note, Ochs says the Defense Innovation Unit has been looking at adding more drones to the list – and another 15 US-made drones are currently under consideration. He also predicts that average prices of US-made, Blue sUAS products will come down over time.

That’s it for now. Check in later, as we’ll be posting lots of cool content from XPONENTIAL.

 

Draganfly sells, donates drones for use in Ukraine

Draganfly sells, donates drones for use in Ukraine

By Scott Simmie

The use of non-military drones in Ukraine has jumped significantly since the Russian invasion began. Consumer products, particularly DJI drones, have been widely used by both sides in the war for situational awareness and identifying combatant positions. They’ve also been used extensively by journalists to help convey the scale of the devastation, particularly the destruction of civilian targets.

Now, North American drone manufacturer Draganfly has announced it will be sending 10 drones for use by Ukrainian forces. The drones – five Medical Response drones and five for Search and Rescue – have been purchased by a third party as a donation to the non-profit relief agency Revived Soldiers Ukraine. They are part of an initial order (subject to conditions) of up to 200 units destined for the conflict zone.

We wanted to learn more about the drones and how they’ll be used, so we sat down virtually with the CEO of Draganfly, Cameron Chell.

Before there was DJI in Shenzhen, there was Draganfly in Saskatoon, Saskatchewan (Canada). Initially founded by Zenon and Christine Dragan in 1998, the company released its first commercialized quadrotor the following year. In 2001, it released the first multi-rotor UAV with an integrated camera system.

It wasn’t long before some early adopters in law enforcement started embracing the utility of drones, using them to help document and clear accident scenes and for Search and Rescue operations.

In fact, in 2013 a FLIR-equipped Draganfly drone helped locate someone who had sustained a head injury in an auto accident and wandered away in freezing temperatures, suffering severe hypothermia. It’s credited as the first drone rescue to save a human life. In fact, that drone now resides in the Smithsonian National Air and Space museum. The case was written about here.

 

Cameron Chell

In July of 2015, Draganfly was acquired by a US technology firm, which is how Chell came into the picture. He says the company’s connection with First Responders has only grown – and is very much part of Draganfly’s identity.

“Draganfly has sold more than 9000 drones or drone systems to public safety,” he says. “We have a strong history of being of service, or trying to be of service, to the First Responder community. That’s a big piece of culture in the organization.”

And that’s why, he says, the shipment of drones to Ukraine is a good fit.

 

Drones for Ukraine

 

The drones were actually purchased by channel partner Coldchain Delivery Systems which specializes in packaging for temperature-sensitive products with an emphasis on medical supplies. Coldchain also has a $750,000 contract with Draganfly for a multi-phase project that could ultimately bring 9-1-1 dispatched drone medical deliveries to the entire state of Texas.

Cold Chain wanted these drones purchased for Revived Soldiers Ukraine, a non-profit agency playing a significant role in assisting during the conflict. (In March alone, RSU provided goods ranging from ambulances and portable X-Ray machines through to bullet-proof vests and helmets for medical personnel and civilians totalling more than $2.75M dollars.)

A total of 10 drones were purchased by Coldchain Delivery Systems for the initial order. Draganfly is selling the drones at cost, and is donating an additional three drones free of charge. Chell says the drones had to be modified to make them suitable for use in Ukraine.

“We had to change all the comms systems out,” he explains. “It’s a different LTE system, there’s a bunch of interference.”

The first drones will ship mid-April.

 

The Medical Response drone

 

Here’s a look at the medical drone, which uses Coldchain’s proprietary system to keep medical supplies at required temperatures.

 

Draganfly

The Medical Response drone has a temperature regulated payload of 35 pounds. It’s intended for shuttling critical supplies, including blood, pharmaceuticals, insulin/medicines, vaccines, water, and wound care kits.

You’ll note in the photo above that the payload is shown on top of the drone. This machine is also capable of carrying the payload beneath, with a quick-release mechanism. Dropping the cargo close to the ground and quickly resuming flight removes potential risk for those receiving the cargo (they won’t be getting close to the drone). It also extends battery life, since the drone won’t have to fully land, shut down, then re-start. Flight time is 25 minutes, with an estimated range of three+ kilometres with a 20-pound payload. Lighter payloads – and it’s anticipated some will be lighter – will have a greater range.

We’re providing drones that are very specific for exactly what they need,” says Chell. “Some others might have an airframe, but they don’t have a temperature-managed payload – so this is very specifically built, this is mission-critical.”

Range on the first shipment will be limited to RF communication over two kilometres. But a second batch, modified for Ukraine, will utilize LTE and have solid communication over a 20-kilometre range.

And the Search and Rescue drones? They’re smaller, faster, and equipped with a thermal sensor – which could prove useful in detecting people trapped in rubble or bombed buildings. Revived Soldiers Ukraine has experienced drone operators; Draganfly will be providing virtual training for these specific drones, and is examining potentially sending trainers to Poland and even Ukraine if more drones are sent in future. (Assuming the first 10 are effective in the field, the potential is here for up to 200 drones being purchased.)

Donations

 

In addition to the these first drones, Chell says several shareholders contacted the company and offered to purchase drones to be donated to the cause. Seven drones have been purchased for this purpose. Chell says the interest has been so great the company now has a page up for people interested in directly purchasing drones for donation. The company says it will provide ongoing mission statistics for those donated humanitarian drones, and possibly even video of some missions.

Draganfly

As you can see by the price tags and builds, these are not consumer drones. The open-source, North American-made Draganfly products are purpose-built for specific tasks, and feature secure data handling.

Perhaps more important in a war zone, they cannot be tracked with an Aeroscope the way DJI products can. The Aeroscope device is capable of tracking not only DJI drones but also the location of the pilot, which – in a war zone – carries significant risks. (It’s believed that Russia has deployed Aeroscope units.)

“We don’t have system where someone else can track the pilot and track the drone,” says Chell. “These things can’t be tracked.”

(Just FYI, other drone companies have recently announced donations on the Ukraine front. We’ve seen recent announcements from Skydio and Volatus.

 

A personal connection

 

While Draganfly has a corporate tradition of working closely with First Responders, Chell reveals that a personal experience has made this mission resonate even more.

“I was at the base of the towers at 9-11 when the first plane hit,” he says.

“Not that I wasn’t a First Responder fan before that, but that weighs very prominently into my ethos or direction in wanting to give back to that community…and in humanitarian situations.”

InDro’s Take

 

Though we haven’t deployed to a war zone, we have flown disaster response missions. In addition, InDro Robotics has considerable experience with drone delivery. We shuttled COVID test kits from a remote, island-based community on a regular basis during the peak of the pandemic. We’ve also been involved in multiple trials and projects, delivering everything from prescription medications and simulated blood products through to Automated External Defibrillators.

We know, from that work, that even with deliberate planning there can be unexpected obstacles, such as gaps in cellular connectivity, interference, abrupt weather changes, etc. Draganfly has already anticipated some of these challenges, including RF interference, cellular dropouts, and the different LTE system.

Successful deliveries, especially when the cargo is critical, require getting the right product in the right hands at the right time. This is even more urgent and difficult in a hostile environment. Revived Soldiers Ukraine has been on the ground since day one of the conflict, and will have a good handle on both the challenges – and the needs.

We wish Draganfly and Revived Soldiers Ukraine the very best in this endeavour – and look forward to an update in the future.