Spexi offers broad range of geospatial tools for drone pilots

Spexi offers broad range of geospatial tools for drone pilots

A Canadian firm has been quietly gaining customers – and a reputation – with its broad palette of geospatial tools for drone operations.

That company is Vancouver-based Spexi.

And while it might not be a household name yet, a growing number of professional drone operators are using its palette of tools (including its mobile app), to plan efficient and accurate flights for the gathering of geospatial data.

The Spexi platform has been designed for a wide variety of sectors requiring actionable data from above, including real estate, construction, precision agriculture and more.

On the real estate front, here’s an example of a panorama produced with Spexi. Get in there with your mouse and scroll around. You can also zoom via scroll or pinching on your trackpad.

The big picture

 

That panorama was seamless, and with great resolution even zoomed in. But it’s only one of many offerings on the Spexi platform. So let’s take a step back for a look at the bigger picture.

The Spexi website outlines the company’s many offerings, along with features of its powerful mobile app.

In terms of data products, Spexi offers the following:

  • 3D models and point clouds showing proportionality of the building and structural features
  • High resolution image galleries with annotations for easy collaboration
  • Up-to-date Google Map tiles showing the property with the ability to measure slopes & volumes and annotate features
  • High resolution image galleries with annotations for easy collaboration
  • 360˚ panoramas with hot spots for points of interest

Here’s a look at a volumetric calculation captured and computed via Spexi. Beats trying to do this manually:

Spexi

The Spexi app

 

A large part of the Spexi value proposition is its mobile app. It allows pilots to quickly plan flight parameters, carry out autonomous data capturing missions, upload and crunch the data – and share the resulting files with stakeholders.

Specific features of the app include:

  • Planning tools for efficient and accurate data acquisition
  • Autonomous flight using the latest DJI drones
  • Secure, cloud-based footage processing and sharing
  • Spexi can carry out survey work using Ground Control Points.

Not a pilot but need a job? Spexi offers access to its network of pilots who can take on the mission on your behalf.

Cost?

 

Good question. Spexi offers a couple of options here, suitable both for those requiring the odd one-off job as well as Enterprise users.

If you’re interested in only the occasional mission, Spexi offers both value and incentive via its “credit” option. Sign up for a free account and you’ll receive five credits. A single credit can be used for a job like the panorama you saw above. A single credit covers up to 100 uploaded images and processing. So just by signing up you can cover five jobs like this. Additional credits can be purchased for $15 each.

Users with high volume processing needs can sign up for the monthly plan. It allows for the processing of up to 3,000 images per month at a cost of $300 per month. If you’re an ultra heavy user, Spexi offers packages for requirements exceeding 3,000 monthly images.

“Our goal is really to help companies and people transform their operations to be more efficient using drones and make better decisions with drone-based data,” explains Spexi Chief Operating Officer Alec Wilson – a helicopter pilot with a degree in geography and remote sensing. He was also a key part of the team that built Coastal Drones into a large online learning platform.

“Spexi is really the only Canadian drone software-based platform that can service contracts at this scale,” he says.

Spexi has already received a vote of confidence from the federal government. Innovative Solutions Canada offered financial backing to Spexi on its path to commercialization and enabled testing and evaluation of the product, including some pretty ambitious missions. Here’s COO Wilson, in a video explaining just one of multiple projects it carried out as a result.

Just the beginning

 

Though Spexi is already an easy-to-use platform with mutiple use-cases, expect more features to come. With the promise of routine BVLOS flight hopefully somewhere around the corner, COO Alec Wilson has ambitious plans for the near future.

“Looking into the future, we see our platform being used to produce drone-based data at much larger scales,” he says.

“There are some amazing new emerging technologies that enable collaboration in ways we have never seen before.  We are in the infancy of this technology, and we at Spexi have some big plans to get drone-based data into the hands of those who need it most including leveraging BVLOS capabilities once available.”

Plans also include collaboration and integration with the FLYY training platform, enabling students to take a deep dive into Spexi’s capabilities. More on that soon.

InDro’s Take

 

We’re pleased to see a Canadian data acquisition and processing company begin to make its name in the field. While it’s up against some stiff competition from larger photogrammetry companies, the Spexi platform is simple to use and powerful – with plans for enhanced capabilities as the industry evolves. Its option for pay-as-you-go credits for those requiring one-off missions is attractive and a great way to test the waters (especially with five free credits on sign-up).

InDro Robotics has some collaboration underway with Spexi, and anticipates this relationship will only grow. More details on that…down the road.

CONTACT

INDRO ROBOTICS
305, 31 Bastion Square,
Victoria, BC, V8W 1J1

P: 1-844-GOINDRO
(1-844-464-6376)

E: Info@InDroRobotics.com

copyright 2022 © InDro Robotics all rights reserved

Consumers ready for drone delivery: Auterion

Consumers ready for drone delivery: Auterion

Consumers love their deliveries.

Whether it’s from hugely popular Amazon or a local retailer, there’s been an explosion in demand for deliveries since the COVID pandemic took hold. People have largely embraced the convenience of a truck pulling up and dropping off goods – despite the carbon footprint of Last Mile deliveries.

But what about drones? Are consumers ready to embrace drone delivery? According to the drone Open-Source company Auterion, nearly half of US consumers are indeed ready to start receiving goods from above.

Auterion

Auterion is a major force in the drone world. In a nutshell, it provides “an ecosystem of connected drones, payloads, and apps within a single easy to use platform based on open-source standards.” In other words, Auterion software simplifies the workflow of all aspects of drone operations. Auterion works with more than 100 drone manufacturers – and that number is growing.

Because its software is used by so many end-users, the company thought it would be a good idea to take the pulse of consumers when it comes to drone deliveries. So it surveyed more than 1000 people to produce a report entitled “Consumer Attitudes on Drone Delivery.”

Its findings? Americans are ready.

The report found “a solid majority of Americans (58%) favor the idea of drone deliveries and even more (64%) think drones are becoming an option for home delivery now or will be in the near future. With more than 80% reporting packages delivered to their homes on a regular basis, the survey finds that Americans are generally ready to integrate drone delivery into daily life.”

And of the 64 per cent who think drones are an option for home delivery, here’s the breakdown for when they believe this will become a viable option:

  • 32% think it’s possible now or within the next 1 to 2 years,
  • 18% say within 3 to 4 years, and
  • 14% within 5 to 10 years

While that’s encouraging, the Auterion report also found some hesitancy.

Auterion Drone Delivery

Not everyone is enthused

 

There is some hesitancy. In fact, 43 per cent of those surveyed feared that the drone might break down during delivery. Other concerns include:

  • 39% – the drone will deliver my items to the wrong address,
  • 38% – if something happens to the drone, I won’t get a refund,
  • 37% – that my items will get ruined by the travel,
  • 35% – that my items will be left unattended making stealing easier for porch bandits, and
  • 32% – that the sky will be cluttered with ugly/noisy technology.

On that last concern, Alphabet’s WING discovered during its early trials in Australia that there was significant opposition to the noise produced by its drones. (The fact WING drones have 14 propellors might have played a role here.)

But there’s ongoing work on reducing drone noise levels, including some innovative new propellor designs. As for some of the other concerns raised, Auterion CEO Lorenz Meier says drones are ready for the task.

“Cargo drones are now able to understand the environment with precision, to communicate through control software in a common language, and to predict safe landing spots in real time for fast package delivery, as well as emergencies and other situations,” says Meier in the report.

“While traffic is jammed and fuel prices are volatile, air space is massive and becoming more accessible. Reducing reliance on gas-powered delivery vehicles with tough, environmentally friendly cargo drones is ultimately a safer, more flexible and more cost-effective approach to delivery.”

The technology is ready. So too, it appears, are most American consumers.

 

Drone Delivery Canada

InDro’s Take

 

InDro played an early role in proving drone deliveries in Canada. The company has shuttled presciption medications to remote locations, transported simulated blood products between hospitals – and even delivered COVID-19 testing supplies for a island-based First Nations community during the peak of the pandemic. InDro Robotics was also the first company in Canada to receive a Cargo License from the Canadian Transportation Agency.

While we acknowledge there’s demand for drone deliveries, our own view is that this technology is perhaps best initially served by delivering urgent medications or other critical supplies to remote or isolated communities and homes.

There’s certainly an argument to be made on the environmental benefits of drones for Last-Mile delivery. But delivering coffee and bagels – though convenient for consumers – could be disruptive to neighbourhoods. We suspect city-dwellers are likely to be more accepting of drone deliveries when the cargo is critical, and not incidental.

Ultimately, and with reductions in noise, there will likely be room for both.

The Auterion survey contains far more insights than we were able to capture; you can read more and download the report here.

Unitree’s “dog” robots versatile, affordable

Unitree’s “dog” robots versatile, affordable

You’ve probably seen “Spot” by now.

That’s the yellow Boston Dynamics quadruped robot. Its structure and locomotion remind a lot of people of a dog, hence the name Spot. But it’s not the only dog in town.

Chinese manufacturer Unitree Robotics has multiple quadrupeds on the market. They are similar in design – and to a large extent, functionality – as the famous Boston Dynamics robot. They are also more affordable, capable of carrying out remote inspections, surveillance and more.

Don’t get us wrong. Spot is a phenomenal piece of engineering and we applaud the team behind it. But so too is the 12-kilogram Unitree Go1, which recently became part of the InDro Robotics stable of robots. We’ve been deploying it at our Area X.O facility on missions, and doing some R&D work of our own to make Go1 even easier and more secure to use.

First, let’s take a look, as Go1 checks out some of his new pals.

Dog Robots

More about Unitree Robotics

 

Though the name may be new to you, this isn’t some brand new startup. Back in 2013, current CEO Xingxing Wang was doing postgraduate studies and developing his first quadruped robot, called XDog. He also took his skills to Shenzhen drone giant DJI during that period.

By 2016, videos of XDog had caused quite a stir. Xingxing Wang connected with an Angel investor, left DJI to become an entrepreneur – and Unitree Robotics was born. Now, six years later, the company has multiple quadruped robots designed for specific applications. There are models for educational and R&D purposes, heavy payload capacity, LiDAR applications and more.

These include:

Go1 EDU: Perfect for educational and research entities interested in testing and building out autonomous capabilities. Its low cost reduces barriers to entry, and the hardware on this robot (well, all of them) is top-notch.

Aliengo: With a battery life of up to 4.5 hours and capabilities on rough terrain, this machine is suitable for a wide variety of applications – including Search & Rescue, inspection or surveillance and more.

B1: This unit is best suited in harsh environments that require computationally intensive autonomous functionality. With an Ingress Protection rating of IP68 and three NVIDIA Jetson NXs, the B1 dominates (any and all) dusty, wet or complex applications. It can also carry a payload of 40 kilograms.

Quadruped Robots

Hardware

 

In case you’re wondering, the company makes its own excellent hardware – including even some of the sensors. So Unitree Robotics is, at its core, a Research and Development company focused on building and selling four-legged robots.

Remember how we mentioned Unitree’s CEO built that XRobot in the early days? You can check out the Unitree robot evolution in the image below, which comes from this page on the company website.

Quadrupeds Canada

InDro Robotics & Unitree

 

We were quite intrigued by the Unitree line, and placed an early order for the Go1. We wanted to put it through its paces and see if there might be some synergy with our other ground and aerial robots. We were quite impressed with the build quality, along with the speed of this robot. It can trot along at some 17 km/hr, which is faster than the other popular quadrupeds on the market.

Plus, it can just do a lot. It wasn’t long before we realised there was a real synergy with other InDro Robotics offerings.

“It’s such a great fit for our product line,” explains Head of Robotic Solutions Peter King. “It’s perfect for R&D clients and is a great match for our industrial clients in critical infrastructure inspection, public safety, and construction and mapping. Plus, it’s incredibly affordable.”

InDro is now a distributor of Unitree Robotics products. We’re also working on some added-value solutions that will make these robots even easier to use.

Dog Robots

InDro’s Take

 

Unitree Robotics produces well-built, affordable products. We’re pleased to have established a partnership with the company, and look forward to distributing its products. The Unitree Robotics products are perfect for a wide variety of tasks, ranging from pure Research & Development through to infrastructure inspection, security – and even First Responder applications.

We’ve also been hard at work on integrating Go1 and other members of the Unitree family into a back-end that will allow for simple and secure operations of these machines from even distant locations and with minimal training – all with secure, real-time data.

Much more on that, coming soon! In the meantime, if you’d like more information about Unitree’s robots, you can get in touch with account executive Luke Corbeth here.

 

InDro Robotics releases “NERDs” White Paper

InDro Robotics releases “NERDs” White Paper

By Scott Simmie, InDro Robotics

We’re pleased to release a White Paper detailing an ambitious and successful project we’ve recently completed.

That project, perhaps appropriately enough, goes by the acronym NERDS – which stands for Network Enhanced Realtime Drone project. It began as a technology challenge issued by the Ontario Centre of Innovation, whose mandate is to “develop and deliver programs that accelerate the development, commercialization, and adoption of advanced technologies to drive job creation.” The project included technical support from Ericsson and access to the ENCQOR network, a test-bed 5G network with a corridor through Quebec and Ontario.

The goal of this challenge? To greatly enhance capability of Enterprise drones and enhance the safety of Beyond Visual Line of Sight flights. The challenge involved designing, building and testing a module that would allow an Enterprise drone to be flown over the 5G network while transmitting even highly dense data in realtime. Some of the more specific goals included:

  • Drone Command & Control (C2) over 5G
  • Transmission of telemetry back to the control station: altitude, speed, compass heading, high-precision GPS, battery level, ambient temperature, barometric pressure, etc.
  • Transmit ultra low-latency, uncompressed 4K video stream via 5G
  • Use a Software Defined Radio to transmit to nearby traditional aircraft that a drone operation in the area is underway

There were other bits and pieces as well, but that sums up the core of the project.

Under the lead of engineer Ahmad Tamimi, InDro got to work. There was a ton of testing, simulations – even mapping out the strength of 5G signals at various altitudes – before we pulled the hardware and software together into a module compatible with any Enterprise drone using a Pixhawk flight controller.

Here’s generation one of that module, which we call InDro Capsule. It’s that black, hexagonal device on top of the drone.

 

Network Enhanced Realtime Drone Technology

Plug & Play

 

We are currently working on a commercial version of InDro Capsule. It won’t be long before we turn this into a product that will enable other Enterprise drones to be flown over 4G and 5G networks. That product will include the Software Defined Radio for alerting private aircraft to drone operations.

There’s actually much more to the system, which integrates into our new software platform, InDro Pilot. One of the more unique features of the InDro Pilot ecosystem is that it will allow Enterprise drone operators to quickly integrate other sensors, simply using a drag and drop interface. You simply select the appropriate module for the desired sensor.

We’re not going to jump into details here, but if you’re like more info about this system you’ll find it here. We will, however, give you a glimpse of how this works by showing you the Winch module:

Network Enhanced Realtime Drone Technology

Context

 

Now that you’ve got some background, we’ll get to the White Paper.

Like all White Papers, this one methodically details the scope of the project, the steps that were taken to achieve those goals, as well as the results. If you’re into the fine details of how a challenge like this gets accomplished, you’ll find plenty to interest you. It’s also a testament to the hard work of InDro’s engineering team – and Ahmad Tamimi in particular. Ahmad spent the early months of the COVID outbreak working on this project solo (along with virtual meetings with Ericsson).

The image below gives you a sense of the granular detail contained in the document.

You can download a .pdf of the White Paper here.

Network Enhanced Realtime Drone Technology

InDro’s Take

 

At InDro, we love a challenge. And the NERDs project presented us, along with partners Ericsson, a significant one.

We believe the resulting InDro Pilot system (which includes the InDro Capsule module) will enable safer BVLOS flight. The 4K streaming and ultra low-latency enhance situational awareness for the pilot, and the Software Defined Radio will alert neaby aircraft to drone operations in the area. In addition, even dense data can be uploaded directly to the cloud during missions. Just as the InDro Commander offers a plug-and-play solution for customizing ground robots, InDro Pilot will do the same for Enterprise drones on the Pixhawk platform.

We are currently making InDro Capsule lighter and more compact, and look forward to commercializing the entire package in the near future.

Some innovative Canadian tech companies to watch

Some innovative Canadian tech companies to watch

At InDro Robotics, we live and breathe innovation.

Not only do we like creating new products and solutions, we enjoy celebrating when other companies – particularly Canadian companies – build cool things.

InDro Robotics recently took part in a Trade Mission sponsored by NRC-IRAP – the National Research Council’s Industrial Research Assistance Program. The program involved some 20 companies heading to Portugal for meetings with leading Portuguese innovation companies and agencies, as well as attending the Global Innovation Summit focussed on a sustainable future.

It was a busy, whirlwind week. But one of the highlights was meeting some of the other Canadian companies in the innovation space and learning more about that they do. So we thought we’d take a moment and highlight a few of them.

 

Oneka Technologies

 

See that buoy floating below? It’s pretty special.

Oneka Technologies
The buoy is built by Quebec’s Oneka Technologies. And it can turn sea water into drinking water, using wave power.

The Oneka system consists of buoys tethered just offshore from an area in need of fresh drinking water. The movement of the waves provides the energy to force the seawater through reverse osmosis filters. The result? Fresh water in places that need it most.

As the system performs its extraction, it also produces a brine containing roughly 30 per cent more salinity than the surrounding seawater. That brine is returned to the ocean, but quickly diluted.

Each buoy requires about 10 square metres of space on the ocean, so multiple buoys can be placed within close proximity. Use-case scenarios include communities with limited access to drinking water, natural disasters where the drinking water has been disrupted – and even seaside resorts in need of desalination.

$5.5M funding round

Last year, Oneka announced it had completed a $5.5M funding round led by Canadian investor Innovacorp and American investor Baruch Future Ventures.

“The world is running out of clean water and Oneka has a solution. It works, it’s affordable, it’s better for the environment, and it can be scaled from local disaster relief and regional demand all the way to meeting utility needs,” said Jonathan Saari, investment manager at Innovacorp in an Oneka news release. “It’s exciting to watch the team build and test their world-changing technology…”

The release says the company is working its first two commercial deploments in the US and Chile. Oneka’s solution produces zero CO2 emissions, and a single device can produce up to 10,000 litres of fresh water per week, enough for 450 people.

Earlier this year, Oneka won the US Department of Energy’s Waves to Water challenge, a competition designed to accelerate the development of small, modular, wave-energy-powered desalination systems. The three-year-long challenge netted the company $500,000 US.

Open Ocean Robotics

And here’s another Canadian company doing innovative things on the water.

Open Ocean Robotics is a Victoria-based company that really grabbed our attention during the Trade Mission trip.

Its solar-powered vehicle (with a patented self-righting system), can travel the ocean for months at a time, sending back critical data in real-time. The model seen here is called the Data Xplorer, and the company also has a model that utilizes rigid sails.

Oneka Technologies

Long-term missions, zero emissions

 

The Open Ocean robotics USV is suitable for long-range missions lasting months, with the vehicle capabale of either autonomous or remotely operated missions (pending how remote those missions are). Here’s what Open Ocean says about the device:

“Powered by the sun, it can travel on the ocean for months at a time collecting ocean and environmental data using its suite of sensors.  It sends this information back in real-time through secure communication systems and clients can control the USV from anywhere in the world using our user portal. Capable of travelling in both coastal and open-ocean waters, and with a customizable platform for multiple sensor integration, it offers the ability to understand our oceans in a whole new way.  Data Xplorer is designed to endure all sea states and is self righting.”

Here’s a look at Data Xplorer in action:

This appears to be a thoughtfully engineered system that can be teleoperated where there’s a cellular signal. In more remote areas, missions can be uploaded via satellite. We’re particularly impressed by the unique self-righting system. It relies on buoyancy in that circular structure at the stern, rather than adding weight to the keel (which would reduce efficiency).

And yes, these USVs can capture a *lot* of useful data: This graphic comes from the Open Ocean Robotics website.

Oneka Technologies
The company has carried out multiple successful missions to date; you can find case studies here. In December of 2021, Open Ocean Robotics wrapped a $4M seed funding round.

Perhaps even more impressive? CEO Julie Angus, in addition to holding multiple degrees (including a Masters of Science in molecular biology), was the first woman to row across the Atlantic Ocean, from mainland to mainland.

 

ACEL Power

 

The Vancouver-based firm focuses on what’s likely to be a booming market in the years to come: Electric outboard motors. The company says its motors deliver 30 per cent more torque than a comparable horsepower internal combustion engine, plus offer a lifespan five times that of a conventional outboard.

All that, with zero emissions.

The company is about to commence manufacturing, and is now taking pre-orders on 50, 60, 75, 100 and 150-horsepower motors. Motors come with the complete ACEL Power system, including:

  • Engine
  • Battery
  • Inverter
  • Throttle
  • Onboard Computer Screen
  • Keyless start Fob

Here’s a look at a prototype engine in action:

And while ACEL Power’s motors are not inexpensive, the company says they will outperform and outlast conventional motors. ACEL also has its eye on potentially producing a Uncrewed Surface Vehicle using its outboards down the road.

You can find more info – and even pre-order a motor – right here.

 

And finally…

 

A brief look at one more company from the trip (though we wish we had room to highlight them all).

Ashored is not in the robotics space, but it has a very intriguing product that will help prevent sea mammal entanglements and hopefully make life easier for people in the fishery industry who use traps for lobsters, crabs etc.

Normally, those traps are dropped to the bottom and attached by lines to small buoys on the surface. Those lines can often entangle whales and other sea creatures. In fact, if whales are spotted in areas where there are active traps, fishers can be instructed to remove traps until the whales move out of the area.

The Ashored system offers a clever solution. Its MOBI (Modular Ocean Based Instrument) keeps the line on the ocean floor until the fisher returns to collect the gear. The rope and small buoy are contained in a cage that is attached to the other traps. Using an acoustic signal (or timer), a magnetic lock is released and the buoy floats to the surface.

You can check out the system in this excellent video:

InDro’s Take

 

The companies on that recent trip, without exception, had impressive innovations and/or solutions. A lot of them were in the maritime space, where we’re seeing an increased use in robotics both on and beneath the surface.

There’s also a growing emphasis on sustainability, in conjunction with net-zero carbon emissions. There can be no doubt there are good use-cases for wave-powered desalination systems, solar-powered Uncrewed Surface Vehicles, electric outboard motors – and more. We look forward to seeing more from these Canadian companies, as well as the others who were on the trip.

In closing, a quick shoutout to Andrew Bauder, Léonie Hyppolite and Scott McLean from NRC-IRAP for organizing and excellent and productive Trade Mission. Thank you.

Meet InDro Pilot: A powerful 5G hardware and software suite for Enterprise drones

Meet InDro Pilot: A powerful 5G hardware and software suite for Enterprise drones

By Scott Simmie

 

Nothing turns our crank quite like developing something brand new; something that’s never been done before. That’s really the heart and soul of R&D.

And that’s also why we’re so excited about InDro Pilot – a new hardware/software solution created by InDro Robotics that will give Enterprise drones and their operators the equivalent of superpowers.

Okay, perhaps there’s some slight hyperbole in that statement. But there’s no question that InDro Pilot will dramatically expand the capabilities of drones using the Pixhawk flight controller, the standard in many Open-Source drones.

InDro Pilot enables operations over 4G and 5G, meaning you could pilot a drone from across the country (providing you have a visual observer with eyes on the flight or a Beyond Visual Line of Sight Special Flight Operations Certificate). It also enables the secure transmission of even highly dense data (such as 4K streaming video) directly to the ground or the cloud with minimal latency. No more pulling out MicroSD cards and waiting for uploads. Realtime data, while you’re flying the mission, sent where it’s required.

Needless to say, this didn’t happen overnight. Getting here required an immense amount of effort from our Area X.O R&D facility. And, in particular, the project’s lead engineer Ahmad Tamimi – seen here on the right. When this photo was taken in the fall of 2021, Ahmad was in the thick of developing the 4K streaming component of the system and integrating it on our Wayfinder drone (foreground).

 

Canada Robotics

There’s a backstory here…

 

The catalyst for InDro Pilot was a technology challenge. The Ontario Centre for Innovation, in conjunction with Ericsson and the ENCQOR 5G testbed, put out a call to Canadian technology companies to enable drone flights over 5G. What’s more, the challenge required the successful transmission of uncompressed 4K video – which will help enable Beyond Visual Line of Sight flights because it provides the pilot with greater situational awareness. There were other bits and pieces, which we’ll explore at a later date. Point is, being the successful applicant in this technology challenge is what started us down the InDro Pilot road.

As we explain what InDro Pilot is all about, we’re going to get into a few names of various components. But big picture? It’s a combination of hardware and software that collectively brings about both enhanced capabilities for the drone itself (ie 4G, 5G, dense data realtime uploads etc.) as well as enhanced options for the drone operator to further customize drone sensors and peripherals for any given missions via dashboard. 

Ahmad Tamimi pulled together this nifty graphic, which provides a high-level view of the system:

Drones Canada

The basics

 

In this post, we’re going to focus on InDro Captain and InDro Capsule.

Let’s start with the latter.

InDro Capsule is hardware, integrated into a capsule. Think of it as a box that can be easily attached to any Enterprise drone using a Pixhawk flight controller, because that’s what it is. That hardware includes:

  • A high-speed Quectel modem for transmitting even dense data to the ground and the cloud in real-time
  • A Jetson-based Edge processor
  • Specialized antennae for both data transmission and Command and Control
  • More IP-protected secret sauce we’ll unveil soon, which has significant implications for Detect and Avoid scenarios

InDro Captain, meanwhile, is the onboard software. It enables communication with the InDro Base (our ground station), secure data transmission to the ground or cloud, and can easily integrate peripherals like a winch or additional sensors.

And what does it look like? Well, the magic is contained within that hexagonal dome – and we’re currently making that dome smaller and lighter. Check out those wild antennae, chosen after a detailed calculations and simulations. And that white one with the InDro logo? We can’t wait to tell you what that one does.

Canada Drones

Another look

 

These pix were taken during the R&D phase of InDro Pilot, so they’re just quick phone grabs. But we have a feeling you’ll probably like to see at least one more:

Canada Drones

By the way, that’s a high-end mirrorless camera on that gimbal. With InDro Pilot on board, transmitting its uncompressed 4K output at minimal latency is a breeze.

When flying over 5G, the feed from this sensor (or any other) can be captured on the ground and simultaneously uploaded to the cloud. Our new InDro Link software (more on that later), securely integrates with third-party cloud services such as AWS, Azure, Google and more.

As 5G networks expand across North America and globally, this has significant implications for not only remote teleoperations and missions on private 5G networks, but also for realtime capturing of dense data. Providing there’s a 5G network at each end of the mission, a drone equipped with InDro Pilot can be controlled from across the country – with the pilot (and others) watching the data acquisition and all other aspects of any given mission in real-time.

 

Interface

 

InDro Pilot is an entire ecosystem for 4G and 5G drone operations, including complex missions involving LiDAR, thermal sensors – even winches. The user interface reflects that, with “modules” (ie winch, etc.) that can be added to customize for each mission. Here’s a look at just one of many modules, offering granular control and at-a-glance monitoring.

Canada Drones

“The InDro Pilot system is going to truly expand the capabilities of many Enterprise drones,” says InDro Robotics CEO Philip Reece. “Just as our InDro Commander module has made ground robots more powerful and customizable, InDro Pilot will do the same for UAVs.”

InDro Robotics has already delivered Wayfinder drones equipped with the InDro Pilot system to clients from the regulatory world. Commercial sales will commence shortly.

Interested in learning more? Feel free to contact Peter King.

InDro’s Take

 

As we said at the outset, nothing gets us revved up quite like creating new solutions. InDro Pilot has a myriad of powerful capabilities not outlined in this story – including some features that will definitely contribute to the safety of Beyond Visual Line of Sight flights though a proprietary system that will alert nearby private aircraft to the drone’s proximity during missions. So we’re excited about this product, much in the same way we were excited when we released InDro Commander for ground robots.

And while all Indro Robotics developments are team efforts, there’s often an individual who really takes the lead and owns the project. In this case, Ahmad Tamimi truly took charge, often working on it alone during those dark and early days of the global pandemic. InDro Pilot is a huge accomplishment, and we applaud Ahmad and the rest of the InDro team.

CONTACT

INDRO ROBOTICS
305, 31 Bastion Square,
Victoria, BC, V8W 1J1

P: 1-844-GOINDRO
(1-844-464-6376)

E: Info@InDroRobotics.com

copyright 2022 © InDro Robotics all rights reserved