InDro Robotics partners with UBC, Rogers, Honeywell on 5G UAV project

InDro Robotics partners with UBC, Rogers, Honeywell on 5G UAV project

By Scott Simmie


Picture a small fleet of drones, flying over an urban centre. They are connected to pilot-observers – and each other – over a 5G network.

Some are carrying critical documents, others prescription medication. The UAVs are flying autonomously, able to avoid any conflicts both with each other and with traditional crewed aviation. One of the drones is powered by a hydrogen fuel cell.

The energy requirements of each flight – factoring in payload, weather and distance were calculated prior to takeoff. The financial cost of each flight is also known, valuable data as companies weigh the business case of drones versus more traditional deliveries.

Sounds valuable to us. And that’s one of the reasons InDro Robotics is part of an ambitious research project, in conjunction with corporate and academic partners, at the University of British Columbia.

Drones Canada



If you’ve been following the work of InDro Robotics, you’ll know that collaboration is a big part of what the company is about.

InDro has partnered with such companies and organisations as NASA, the Canadian Space Agency, Ericsson, the National Research Council – and many others. (If you’re interested in seeing some of our other partnerships, check out the bottom of this page.)

We’re now pleased to announce our latest collaboration: A major project involving the University of British Columbia, Rogers, Honeywell and more.

It’s called the UBC Mini Cities Research project. And it has ambitious goals.

Below: UBC Campus. Photo by Martin Dee / UBC Brand & Marketing


Canada Robotics



Let’s start by taking a look at what the term “Mini-Cities” actually means. For that, we contacted Omar Herrera, Senior Program Manager at UBC.

“UBC is just like a small city,” he says. “It has its own population, its own services, streets, garbage disposal – so it’s like a mini-city, in a way. One of the things we’re interested in with this project is how can we really deploy UAVs in the cities.”

So you can think of the UBC Campus, which is also serviced by a Rogers 5G corridor, as kind of a test-bed to prove the safety, viability and economics of drone deliveries in a major urban centre. What weights and sizes of packages can be delivered and over what range? How many drones can be operated autonomously at a single time over the network? Does 5G connectivity vary with altitude? Can an Unmanned Traffic Management system – to minimise the potential for conflict with low-flying traditional aircraft – be successfully deployed and demonstrated in a mini-city? Can AI use data from previous flights to accurately predict energy demands for future missions? How efficient (and cost-effective) is a hydrogen fuel cell drone when compared with one powered by lithium-polymer batteries?

These are all questions – and there are more – that the project will be answering.

If that sounds like a major task, it is. In fact, InDro has relocated mechanical engineer Keegan Richter from our Vancouver bureau to a lab office at UBC – allowing Richter to work directly with the UBC team and MéridaLabs.

Richter is now InDro’s “traveling scientist,” working on the UBC campus three days a week, connecting with broader engineering departments.” That’s Richter below, on the UBC campus.




“I’m really excited to be working with the MéridaLabs team,” he says. “They’re truly reimagining clean technology.”

Richter is acting as the technical lead for InDro’s proprietary hardware and software (Wayfinder and InDroPilot), serving as liaison between InDro Robotics and other partners, and assisting with project management.

The InDro robotics Wayfinder drone will be flown over 5G using InDroPilot for the first phases of the project. Rogers has supplied a CradlePoint router which will measure and log 5G signal strength along the flight corridor – including at various altitudes. Heat maps created with this data will be used to optimize future flight planning.

“We want to assess the capacity of InDro’s Wayfinder to deliver packages,” explains Richter. “Demonstrating how much, how fast, and how far we can carry essential goods are questions of particular interest to the team.”

A Masters student, working within MéridaLabs, will be crunching the data for energy demands and costs. The goal is to build an AI model that can quickly determine energy needs and ranges for future planned missions. This software could prove to be of great assistance to other UAV companies hoping to conduct deliveries at scale.

Canada Drones

UBC’s Interest


Omar Herrera also has a technical background. He’s a chemical engineer with a PhD in mechanical engineering. He explains that a major project about energy was already underway and that this seemed a logical next step.

“The reason why this all came to be is because we (MéridaLabs) had a project with the University – a large test bed – combining different kinds of energy sources into energy storage. Moving that energy is what really drives us, and our research is related to that.

“One of the visions we have is that transportation doesn’t have to be limited to manned vehicles. And that’s how we got connected with InDro Robotics.”

The project will also capture data to help determine how many drones could potentially be operating simultaneously (and autonomously) in a 5G environment.

“We’re going to look at a few things, including the implications of antennae. Let’s say we have hundreds of drones (in flight) with hundreds of signals underneath. With drones flying autonomously, what would be the threshold for the number of drones that can fly safely (over 5G)?

It’s a good question. And while the project will at one stage involve multiple drones flying simultaneously – there won’t be a real-world test involving hundreds. But Herrera says software developed for the project will be able to predict, based on a small number of drones, what is likely to happen with many more in the air.

You’ll recall Herrera mentioned MéridaLabs is deeply involved with energy and energy storage. This video (which includes drones!) provides a good overview.

InDro’s Take


UBC was North America’s first 5G campus, and this isn’t InDro’s first involvement with the institution. It is, however, the most ambitious.

“This project should produce excellent data – along with further solutions – to enable safe and autonomous BVLOS drone missions and deliveries over 5G,” says InDro Robotics CEO Philip Reece. “We believe the results will be useful not only to project participants, but to the RPAS industry as a whole.

“A world where drones and ground robots carry out important tasks at scale, utilising the bandwidth and power of high-speed networks, is coming. I believe this research is an important part of the way forward.”

Stay tuned. This is a long-term project. But we’ll keep you up to date as we hit milestones along the way.

Rogers speaks with InDro CEO Philip Reece

Rogers speaks with InDro CEO Philip Reece

By Scott Simmie, InDro Robotics

Rogers Communications, as you likely are aware, is a leading Canadian telecommunications and media company. Many of us watch television, cruise the internet, text and make phone calls using Rogers systems.

It’s also a leader in the world of 5G networks, which bring a quantum leap in wireless data transmission bandwidth. You can pump a lot of data via 5G, which opens up a lot of new opportunities for technologies like drones. For example, you could transmit crystal-clear 4K video with a drone over 5G. (We’ve already done it.)

What you might not be aware of is that InDro Robotics has partnered with Rogers on a number of projects involving flying drones over its 5G network, and transmitting real-time data back to the ground. InDro sees 5G as something of an inflection point in the world of drones and robots, paving the way for critical missions – even missions that are operated from hundreds or thousands of kilometres away.

A chat with Philip Reece

Because 5G and drones are going to be a big deal, Rogers had one of the writers from its business blog get in touch with InDro CEO Philip Reece. Specifically, they wanted to ask Philip to describe three cutting-edge uses of drone technology.

That’s a good question. And Philip was ready with some answers, which now appear on the Rogers For Business blog. Here’s a screen grab from the article:

Rogers 5G

The three examples…

It’s a good thing Philip (pictured here) was asked for only three examples, because 5G opens the door to a lot of new innovative and positive uses of drones. (InDro, if you weren’t aware, has always been interested in putting drones and robots to work doing good things.)

We don’t want to give away too much from that Rogers blog, but we will flag these three cutting-edge use-cases that Philip explores in greater detail:

  • Delivering urgent medical aid
  • Flying from public to private networks
  • Capturing critical data for First Responders

In each of the above examples, 5G plays a role in tremendously expanding the capabilities of drones. With First Responders, for example, a drone could be remotely operated over an incident by an InDro pilot – providing Responders with instant situational awareness, allowing them to focus on the task at hand instead of flying drones.

Philip Reece

Check it out…

There’s much more, of course, and Rogers captured it very well. It’s a really worthwhile read, and you can find it right here.