Sales and support: The InDro Experience

Sales and support: The InDro Experience

By Scott Simmie

 

We’ve all had them. Some unfamiliar number shows up on your phone, and the next thing you know someone is trying to pitch duct cleaning, a new cellular plan, or something else you likely don’t want or need.

You’ll never receive a call like that from us. For one thing, we don’t do duct cleaning (though we could probably build a robot capable of that). But there’s a bigger, more important reason. We cater – above all – to building a relationship with and satisfying the needs of the client. That’s both before we agree on a sale, and for long after the product is delivered.

While InDro is known for such ground-breaking stand-alone products as InDro Commander, the new InDro Cortex and InDro Controller, along with other platforms that enable researchers and R&D companies to build their own robots and drones with greater efficiency and simplicity, the bulk of our sales are custom products.

That means designing and building a robot or other device based on the specific needs and use-cases of the customer. Sometimes it’s a single, one-off design. But it could also be, as we recently reported, an entire fleet of custom robots for swarm research.

Regardless of the product or platform, the process nearly always begins with the first of many conversations with Luke Corbeth, our Head of R&D sales.

Below: Luke at a recent conference

Luke Corbeth

CORBY CAR CLEANERS

 

The story, or part of it, begins with a company called Corby Car Cleaners. “Corby” was Luke’s nickname in high school. An entrepreneur at heart, the prospect of working a traditional job didn’t appeal much. Corbeth wanted to learn about running his own business and was looking for the satisfaction that comes with building something from scratch. So he opened an on-demand car detailing business, where he’d show up at the client’s home and perform the service. How many people do you know that had the drive to start their own company in high school? (I can think of only one other; a friend who installed car stereos. I ran into him, decades later, at a CES show. His company was by then installing high-end systems – $100k+ – into cars owned by pro athletes, actors etc.)

“That was my way of building a basic business – doing sales and then actually executing the business,” he recalls.

With that – and high school – under his belt, Corbeth went to McGill University. Specifically, the prestigious Desautels Faculty of Management for a degree in Management. Corbeth had already shown a real knack for finance, which was part of the course. But he had the option of choosing specialisations. He was tremendously interested in technology – learning about AI, startups, the growing impact of other forms of tech – so he selected Digital Innovation as one of his tracks. But there was still another specialty he could select.

“I had something I was interested in (Digital Innovation), something I was good at (Finance) and something I felt I was missing,” he says. And that third piece of the puzzle?

“I didn’t understand the way operations are conducted. So I felt Operations Management was the missing piece; data science and understanding the optimal way to carry out operations. So that became the third piece of my arsenal.”

 

FROM CAR CLEANING TO WALL STREET

 

With his degree fresh in hand in 2019, Corbeth quickly landed two impressive jobs straight out of the gate. He did equity research at a hedge fund in New York, working to identify investment opportunities that the company referred to as having “material dislocation from fair value.” In other words, assets and stock that were undervalued. He also worked at a private real estate investment firm – which only had a single product to sell. He didn’t like that one much.

“When you have only one offering as a sales professional, it occasionally it feels like you’re trying to put a triangle into a circular hole – like you’re trying to force something upon someone.”

That wasn’t a fit for Corbeth. He was still drawn to technology; felt that was the future. Plus, something A McGill professor once said still resonated with him. It was along the lines of: ‘All the best investments in life, you need to be contrarian and right.’

“I was like, ‘Wow, that’s a very profound thought.’ Another way to think of that is: ‘You have to believe in a future that people don’t yet believe in, but will one day also believe in.’ And that’s what really attracted me to robotics,” he says.

“Sci-fi would suggest that it’s the future, but not everyone sees a future where robots are assistants to humans – carrying out useful and valuable tasks and doing the jobs we don’t want our kids to do. But I believe in that future, and I think people are going to want that future. And you know what? It’s becoming increasingly true.”

And then came the perfect fit: An opening for a sales professional at InDro Robotics in 2021.

“I was very excited at the prospect of joining the very field I was most interested in,” he says.

Below: Head of R&D Sales Luke Corbeth doing a public demo at the opening of Area X.O’s DARTT – the Drone and Advanced Robot Training and Testing facility 

 

 

THE INDRO EXPERIENCE

 

With this background, Corbeth had the perfect skill set – and passion – to take on sales with InDro Robotics. His keen interest in technology led him to quickly absorb everything possible when it came to sensors, compute capabilities, autonomy and more. But it was the chance to tailor something very specifically suited to the needs of a customer that truly appealed. He would never again be in a position of trying to put a triangle into a circular hole.

“What’s very unique about InDro Robotics is that because we take such a modular approach and we have so many partners and ways to bring solutions together, It feels like I always have the right shape to put in each hole – regardless of what shape it is.”

As mentioned, InDro most often builds completely custom robots for its clients. Corbeth is truly passionate about working with clients to fully understand their needs before even beginning to explore what options might be developed for them.

“The way I think about my job is this: People present a problem that they envision a solution for that requires uncrewed systems of some kind, whether that’s robots or drones. And I take it upon myself to thoroughly understand that problem and recommend all of the best available hardware and software at our disposal to solve that problem,” he says.

With rare exceptions, this isn’t just a simple phone call. Nor is it a process of simply ticking boxes for sensors, compute, platform etc. For Corbeth (and InDro), it’s the beginning of a relationship where together we explore every conceivable option to ensure that the client’s needs are met and their problem is solved. It generally starts with Corbeth sending a resource package to potential clients prior to any deeper conversation, so that they can fully understand InDro’s offerings, expertise, platforms, etc.

“The whole idea there is: Let’s identify the problem – and let’s identify the desired future. And since they’ve done their homework, ideally with the resources I’ve sent, then we can really dive into exactly what InDro Robotics can do specifically to get them there.”

This is a key part of the process.

“So the initial part of the conversation is always trying to understand the client’s desired future: What is it they’re actually trying to accomplish? And often times, just by talking it out with the client, I make discoveries about what they’re trying to do. They even make discoveries about what they’re trying to do. That’s always the first part: Thoroughly identifying the problem and what the ideal future should be.”

In some cases, for example, clients have come in looking for a wheeled platform, perhaps because they’ve seen a similar robot with wheels. But after further exploration of the use-case and terrain, they might together discover that a quadruped or tracked platform might be more suitable.

“If a client doesn’t know the existence of something, then it’s impossible for them to know that’s actually what they need,” he explains. “So part of my job is informing them of what is available, what is trending, what has been successful. It’s all about clarifying that problem and that vision for the future – and then seeing if we have something in the arsenal that can help get them there quickly.”

Below: Luke being interviewed at Area X.O’s DARTT

FROM PROBLEM TO SOLUTION

 

So then what happens?

Well, the second phase is seeing if there’s a fit. Can we provide what the client is seeking? Usually, of course, the answer is yes.

“With all that is available to us, can we offer something that meets their budget, meets their timeline, meets all of the project requirements so that we can help them achieve this future they’re seeking?”

This is something we really want to nail down.

“Sometimes in sales, companies will say: ‘Yes, my solution can solve every problem’ – and that’s not always the case. So if it makes sense to refer them to an adjacent providers outside our immediate circle, I’ll do that. But we’re in a fortunate position where we can solve a lot of problems – so that doesn’t happen very often.”

Once the client’s needs are fully understood, Corbeth works closely with them to drill down to the specifics: What type of LiDAR and other sensors best suit the application? How much compute power is needed? What platform and locomotion is best suited to the use-case? Is an autonomy stack required? The list, of course, goes on. And InDro has multiple options in every category to ensure the end product is the right one.

 

NEXT STEPS

 

We live, unfortunately, in a world where there’s a lot of hype – particularly when it comes to technology. There’s no shortage of vapourware, renders for products that don’t yet exist, and other techniques to draw clients into a sales funnel. At InDro, we take great pride in the fact our products are real and do exactly what we state.

“We’ve built custom products for everyone from small colleges and research teams right up to the largest technology companies in the world,” says Corbeth.

It’s one thing to say that; it’s quite another to prove it. And so Corbeth frequently arranges for an in-person or remote demonstration, where clients can control an existing robot or drone and take it for a test drive. They can experience the near-zero latency with remote ops, see the intuitiveness of the control system, and view all sensors, robot health (and much more) through the secure InDro Controller dashboard.

“We get them time on the sticks – ideally in person, but very often over Teams – and let them control a robot on our site. They can see how we plan missions, how we execute missions, and just how user-friendly and effective this technology is.”

That demo – controlling and seeing InDro products in action – generally seals the deal.

“Usually we move from there to quotes and service agreements and then, ultimately, a purchase order.”

Below: Luke engages with an attendee at the big IROS conference in Detroit in fall, 2023

FULFILLMENT AND SUPPORT

 

Even with the PO signed, the job isn’t done. Prior to starting the build, there’s generally a review call with the client along with engineering staff on the call. We want to ensure we have everything right, and understand every single facet of what the client is expecting.

“It’s a way of ensuring that what we end up delivering ultimately meets every expectation – because the worst thing you can do is send something out the door that doesn’t meet expectations. So we do that, and then we execute,” he says.

With the build complete, the product is shipped. Then there’s another call once it arrives. That ‘kickoff’ call points the client to the vast array of resources and continuously updated documentation InDro provides, as well as answering any initial questions the client might have. The whole concept here is to flatten the learning curve and ensure the client can get up and running with their robot or drone as quickly as possible. That support continues with any issues or questions that might arise after the client becomes familiar with their robot or drone or other device. At InDro, we are just as concerned with ensuring the client is satisfied and able to fully exploit their new product as we were with the original sale.

“We really value the client’s experience and the client’s feedback. In some ways, we create a feedback loop. And that feedback loop is what has enabled us to improve and evolve our products and our documentation at such a fast rate.”

 

KNOWLEDGE BASE

 

Luke Corbeth is frequently our lead person at robotics conferences and academic gatherings. He’s the guy PhD engineers will often engage with on InDro products and solutions. And the funny thing here? Luke’s comprehensive understanding of the technologies involved frequently lead people to assume he’s an engineer. In fact, that happened just this week at a University of Toronto event.

“That was like the penultimate compliment,” he says. “Despite having no formal education in engineering, I understand every part of our solution in enough detail that I can knowledgeably discuss hardware and solutions with some of the best professors in the world. Granted, I can’t build an autonomy algorithm. But I know what the robot needs to enable that.”

Of course, Luke would not have been able to reach that knowledge level without working closely with InDro’s talented engineering team at Area X.O. Whenever he’s had a question – they’ve had the answer. Many on our team have served as mentors for him.

Now, it’s one thing for us to say all this. But the real credibility comes with feedback from our clients. Luke received this note after the delivery of a custom robot build for, truly, one of the biggest companies in the world:

“Hey Luke – The robot is fantastic; the craftsmanship is superb; the power on the base is enabling; the intricate way in which the computer fits in the base housing is incredible; the compute box + mast feels “just right” (there’s no template for social robot design, but I feel like we got very close); all these things make me really confident that, with the right algorithms (my responsibility) we can safely and efficiently navigate through crowds.  It’s a really special robot that I can’t wait to put in the field.  Your team deserves a raise!”

(We’ll have to ask our CEO about that last bit.)

Below, our recent swarm robotics build for a US client

 

 

Robosense LiDAR Swarm

INDRO’S TAKE

 

InDro would not be thriving without satisfying our clients (many of whom are repeat customers, or are referred to us by existing ones). It is part of our very ethos to fully understand the problems they are trying to solve before we ever start discussing a solution. And it’s only then, through a very collaborative process with the client, that we can deliver a product that not only meets – but frequently exceeds – their expectations.

“Luke is a crucial and always enthusiastic part of the InDro Robotics team,” says Founder and CEO Philip Reece. “His understanding of the technology is phenomenal, and his drive to truly help clients achieve the future they envision seems to be hard-wired into him. Yes, meticulous builds are a key part of client satisfaction and InDro’s reputation. Luke plays an absolutely key role in ensuring that what we ultimately build and deliver is a match with their expectations.”

If you’re considering a robotics solution, contact Luke Corbeth here. He’ll be happy to arrange a test drive.

InDro completes design, build and delivery of robots for swarm research

InDro completes design, build and delivery of robots for swarm research

By Scott Simmie

You’ve likely seen swarm behaviour in nature – or at least video of it.

Flocks of starlings produce incredible patterns known as murmurations, undulating with split-second speed. Certain species of termites build massive and complex mounds, complete with sophisticated ventilation shafts to ensure air exchange and temperature regulation. Some types of fish, when attacked by predators, form tightly whirling balls as a defense mechanism. Bees build complex hives and have specific roles that all contribute to the collective. And ants, as you’re aware, can do a lot more than spoil picnics.

All of these, though very different, are examples of swarm behaviour. No single individual is in charge, yet these creatures work together to great synergic effect.

Below: A starling murmuration at Rigg by Walter Baxter, CC BY-SA 2.0 via Wikimedia Commons

A_starling_murmuration_at_Rigg_

SWARM ROBOTICS

 

It was actually through these observations in nature, particularly of insects, that the concept of swarm robotics first emerged.

“In a robot swarm, the collective behavior of the robots results from local interactions between the robots and between the robots and the environment in which they act… The research of swarm robotics is to study the physical body and the controlling behaviours of robots. It is inspired but not limited by the emergent behaviour observed in social insects, called swarm intelligence. Relatively simple individual rules can produce a large set of complex swarm behaviours. A key component is the communication between the members of the group that build a system of constant feedback. The swarm behaviour involves constant change of individuals in cooperation with others, as well as the behaviour of the whole group,” states this Wikipedia entry.

Much of the early research (and some of the more complex, current research) involves high numbers of very simple robotic devices. But as the field has developed, so too has the size and capabilities of the robots being used in swarm applications and research.

“The idea behind swarm robotics is the robots are able to communicate with each other and thus improve their decision-making and data acquisition in a given environment from a real world application standpoint,” explains Head of R&D Sales Luke Corbeth.

 

THE BOSTON EXAMPLE

 

One InDro client, Boston University, is using a very large fleet of small but smart robots called LIMO in swarm scenarios. One aspect of their research involves how autonomous vehicles interact with each other. Can the robots detect others merging and take appropriate action? How can autonomous vehicles detect and interact with robots that have been programmed to behave as if they’re human-driven vehicles?

Research like this is obviously more practical (and far less costly) to carry out in a lab rather than on city streets. It’s important work as we head toward the Smart Cities of the future, where eventually all vehicles will be autonomous – and much of the current infrastructure (traffic lights, stop signs) will no longer be necessary because all Connected Automated Vehicles will be part of a network.

“These vehicles become nodes in an Internet in which the vehicles talk to each other,” said Christos Cassandras, Distinguished Professor of Engineering, Head of the Division of Systems Engineering, and Professor of Electrical and Computer Engineering in an earlier interview with InDro.

“They exchange information and so, ideally cooperatively, they can improve metrics of congestion, of energy, of pollution, of comfort, of safety – perhaps safety being predominant.”

It’s fascinating work, and you can check out our story about it here.

But the ability of swarms to move and collect and share data collaboratively also opens up other use-case scenarios.

“If you are able to team your robots together, obviously you can cover a lot more area in a shorter period of time because the robots are essentially building a map together rather than being dependent on a single robot to build that map. One of the most obvious applications is search and rescue,” says Corbeth.

To illustrate, we borrow this example from research being carried out at Carnegie Mellon University:

INDRO’S CUSTOM SWARM

 

We recently built and shipped four identical custom robots for North Carolina State University’s Department of Mechanical and Aerospace Engineering. Corbeth was the conduit, putting together a package that suited their very specific needs. It began with selecting one of our 18 available platforms.

“They chose the Scout Mini, which is far and away our most cost-effective platform. And it’s unique in that it’s capable both indoors, like in their lab, but also for outdoor use,” says Corbeth.

That, of course, was just the start. Each robot was outfitted with the InDro Commander, which tucks a lot of power and flexibility within its IP54-rated enclosure. Commander houses the brains or the robot – which in this case is a very powerful piece of compute. Commander is completely customisable based on client requirements and contains ROS1 and ROS2 folders. (It also enables rapid integration and recognition of multiple sensors, and has the option of shipping with either or both of InDro’s autonomy stacks for outdoor or indoor use – think GPS-denied and SLAM. In this case, the client will be building their own autonomy stack, as that’s part of their research.)

And this client wanted Commander equipped with a powerhouse.

“They upgraded from a Jetson Xavier NX to the AGX Orin Developer Kit. That’s the best-in-class onboard compute you can add to a robot these days,” he adds.

That’s not hyperbole. The AGX contains a 2048-core NVIDIA Ampere architecture GPU with 64 Tensor Cores. Unfamiliar with Tensor Cores? They mean ultra fast AI processing.

“Tensor Cores enable mixed-precision computing, dynamically adapting calculations to accelerate throughput while preserving accuracy and providing enhanced security,” states the NVIDIA website. “The latest generation of Tensor Cores are faster than ever on a broad array of AI and high-performance computing (HPC) tasks. From 4X speedups in training trillion-parameter generative AI models to a 30X increase in inference performance, NVIDIA Tensor Cores accelerate all workloads…”

That AI computer is capable of – wait for it – 275 TOPS, or trillions of operations per second. (Yes, it’s kind of hard to get your head around that.)

 

SENSORS, SENSORS, SENSORS

 

Corbeth worked with the client to outfit each swarm robot with the sensors needed for the job. Starting with the basics, each robot contains two pinhole cameras (one front, one rear) so the operator can remotely see the robot’s eye view using our proprietary dashboard, InDro Controller. For depth perception, we added ZED X stereo cameras which – like human eyes – see the world in three dimensions. These are used for obstacle avoidance (in conjunction with LiDAR, which we’ll get to).

Connectivity is key with any robot. But when it comes to swarm robotics, it’s particularly important to have high-speed, low-latency communication not just with the controller, but between the robots themselves.

“Obviously doing swarm requires 5G connectivity,” says Corbeth. “So there’s a 5G modem in each robot as well as our Wi-Fi development module. In addition to communication between the robots and with InDro Controller, this also means they can program these robots without having to hard-wire into them. In fact, students or researchers could upload algorithms from pretty much any location – they don’t need to be on-site or on the same WiFi network, which has been the traditional route.”

Each robot features GPS and IMU modules, plus a Robosense Helios RS-5515 32-beam LiDAR module. These sense the environment in three dimensions by rapidly scattering and receiving the reflections from eye-safe laser beams. It allows the robot to safely navigate and map in completely unfamiliar and GPS-denied locations, and even carry out precision scans. We recently featured Robosense in this post, detailing how the quality is absolutely on par with the biggest names in the industry. (Selecting Robosense for this project saved the client close to $80,000 without losing any capabilities.)

Outstanding in their field: A look at the InDro-built swarm fleet just prior to shipping to the client

Robot Swarm

INDRO’S TAKE

 

It was a fascinating project to build a small swarm from the ground up for the specific needs of this client. We look forward to checking in with North Carolina State University once the research is fully underway – and will report back to you.

“There’s no doubt that swarm robotics is an important tool, not only in R&D but increasingly in real-world applications,” says InDro Robotics Founder and CEO Philip Reece. “Whether it’s search and rescue, mapping difficult environments at scale, or developing algorithms that will enable Connected Automated Vehicles in the Smart Cities of the future, swarms are synergic tools that produce outcomes far greater than the sum of their parts – and that do so with greater speed and efficiency.”

Interested in exploring options for swarm robotics? Contact Luke Corbeth here.

Robosense sets new bar for affordable, powerful LiDAR sensors

Robosense sets new bar for affordable, powerful LiDAR sensors

By Scott Simmie

 

Building or modifying a robot?

Specifically, are you working on something with autonomy that needs to understand an unfamiliar environment? Then you’re likely looking at adding two key sensors: A depth camera and a LiDAR unit.

LiDAR (as most of you likely know), scans the surrounding environment with a continuous barrage of eye-safe laser beams. It measures what’s known as the “Time of Flight” – meaning the time it takes for the photons to be reflected off surrounding surfaces and return to the LiDAR unit. The closer that surface is, the shorter the Time of Flight. LiDARs calculate the time of each of those reflected beams and convert that into distance. Scatter enough of those beams in a short period of time (and LiDARs do), and you get an accurate digital representation of the surrounding environment – even while the robot is moving through it.

This is particularly useful for autonomous missions and especially for Simultaneous Localisation and Mapping, or SLAM. That’s where a LiDAR-equipped robot can be placed in a completely unfamiliar (and even GPS-denied) environment and produce a point-cloud map of its surroundings while avoiding obstacles. Quality LiDARs are also capable of producing 3D precision scans for a wide variety of use-cases.

All great, right? Except for one thing: LiDAR sensors tend to be very expensive. So expensive, they can be out of reach for an R&D team, academic institution or Startup.

There is, however, a solution: Robosense.

The company produces LiDAR sensors (both mechanical and solid-state) that rival the established players in the market. And they do so for about one-third of the cost of the industry heavyweights.

“The performance of Robosense is outstanding – absolutely on par with its main competitors in North America,” says InDro Account Executive Callum Cameron. “We have been integrating Robosense LiDAR on our products for about two years, and their performance is exceptional.”

Below: A fleet of four robots, equipped with Robosense LiDAR, which recently shipped to an academic client.

 

Robosense LiDAR

ROBOSENSE

 

The company might not yet be a household name (unless your household has robots), but as of May 2024 the firm had sold 460,000 LiDAR units. Its sensors power a large number of autonomous cars, delivery vehicles and other robots – and it’s the first company to achieve mass production of automotive-grade LiDAR units with its own in-house developed chip.

The company was founded in 2014, with some A-level engineering talent – and it’s been on a stellar trajectory ever since. One of the reasons is because Robosense produces all three core technologies behind its products: The actual chipsets, the LiDAR hardware, and the perception software. We’ll let the company itself tell you more:

“In 2016, RoboSense began developing its R Platform mechanical LiDAR. One year later, in 2017, we introduced our perception software alongside the automotive-grade M Platform LiDAR sensors tailored for advanced driver assistance and autonomous driving systems. We achieved the start-of-production (SOP) of the M1 in 2021, becoming the world’s first LiDAR company to mass-produce automotive-grade LiDAR equipped with chips developed in-house,” says its website.

The company now has thousands of engineers. And it didn’t take long before the world noticed what they were producing.

“As of May 17, 2024, RoboSense has secured 71 vehicle model design wins and enabled 22 OEMs and Tier 1 customers to start mass production of 25 models. We serve over 2,500 customers in the robotics and other non-automotive industries and are the global LiDAR market leader in cumulative sales volume.”

The company has also received prestigious recognition for its products, including two CES Innovation awards, the Automotive News PACE award, and the Audi Innovation Lab Champion prize.

“This company has standout features, including Field of View, point cloud density and high frame rates,” says Cameron. “If you look at that fleet of four robots we recently built, using the competition those LiDAR units alone would have come to close to $80,000. The Robosense solution cost roughly one-quarter of that with similar capabilities.”

And the factories? State of the art. Though this video focuses on its solid-state LiDAR, Robosense uses the same meticulous process for its mechanical units:

LiDAR FOR EVERY APPLICATION

 

Robosense produces many different LiDAR sensors. But what particularly appeals to us is that the company has (excuse the pun) a laser-like focus on the robotics industry. Its Helios multi-beam LiDAR units have been designed from the ground up for robots and intelligent vehicles. There are customisable fields of view, depending on application, and a near-field blind-spot of ≤ 0.2 metres. In addition, Helios LiDAR comes in 16- and 32-beam options depending on point-cloud density and FOV requirements. Both are capable of functioning in temperatures as low as -40° or on a scorching day in the Sahara desert. There’s also protection against multi-radar interference and strong light (which can be an issue with LiDAR). You can learn more about its features here.

Its Bpearl unit proves that very good things can indeed come in small packages. With a 360° horizontal and 90° vertical hemispherical FOV, it’s been designed for near-field blind spots, capable of detection at ≤10 cm. That’s why we selected it for a robot designed to inspect cycling lanes for hazards (while avoiding cyclists, of course). We actually have two Bpearls on that robot (one on each side), since detecting blind spots and avoiding other obstacles is so critical to this application.

“We’ve integrated both the Bpearl and Helios LiDAR units into multiple different robots and the performance has been excellent, even under adverse conditions,” says Cameron. “Obstacle avoidance has been outstanding, and SLAM missions are a snap.”

Below: This InDro robot features two 32-beam Robosense Bpearl LiDAR units. You can see one of them – that tiny bubble on the side (and there’s another one on the opposite side):

InDro Sentinel

THE THREE “D”s

 

You’ve likely heard this before, but robots are perfect for jobs that are Dirty, Dull or Dangerous – because they remove humans from those scenarios. Robots, particularly inspection robots, are often subjected to extremes in terms of weather and other conditions.

So this is a good place to mention that if a Robosense LiDAR encounters fog, rain, dust or snow it has a de-noising function to ensure it’s still capturing accurate data and that your point cloud isn’t a representation of falling snow. All of the Robosense LiDAR sensors have outstanding Ingress Protection ratings.

Because adverse conditions are quite likely to occur at some point during a robotic mission, Robosense puts its products through absolutely gruelling tests. Hopefully your robot won’t encounter the scenarios seen below, but if it does – the LiDAR will keep working:

INDRO’S TAKE

 

We take pride in putting only the highest quality sensors into our products.

Prior to adopting Robosense as our “go-to” LiDAR about two years ago, we were using big-name products. But those products also came with a big price tag. When we discovered the quality and price of Robosense LiDAR units, it was an obvious choice to make the switch. We have shipped multiple Robosense-enabled robots to clients, saving them thousands of dollars – in one case, tens of thousands – while still capturing every bit of data they require. Robosense is now our go-to, even on our flagship products. (We recently did a demonstration of one of our newer Helios-equipped autonomous quadrupeds to a high-profile client; they were amazed with the results.)

“Robosense is every bit the equal of the heavyweight LiDAR manufacturers, without the downside of the high cost,” says InDro Robotics CEO Philip Reece. “The field-of-view, point cloud density and quality of construction are all state-of-the-art, as are the manufacturing facilities. What’s more, Robosense continues to push the envelope with every new product it releases.”

Interested in learning more, including price and options? Contact Account Executive Callum Cameron right here, and he’ll give you all the info you need.

SkyScout AI offers new solution for wildfire detection, mitigation

SkyScout AI offers new solution for wildfire detection, mitigation

By Scott Simmie

 

We did a quick check, just now, on the current wildfire situation in British Columbia.

Nine wildfires were burning and labelled as “Out of Control” by the BC Wildfire Service. An additional two fires were categorised as “Wildfires of Note.” And we’re still very early in the wildfire season.

Recent years have seen an increase in devastating wildfires – in British Columbia, Alberta, California, Hawaii and elsewhere in North America. A 2014 fire in the Northwest Territories completely destroyed 8.5 million acres (3.44M hectares). There have also been massive wildfires in Portugal, Australia (42 million acres/17M hectares burned in 2019/2020), Russia – and other countries as well.

These examples are indicative of a trend; there’s compelling (and troubling) data to back this up.

“Multiple studies have found that climate change has already led to an increase in wildfire season length, wildfire frequency, and burned area,” says the United States Environmental Protection Agency. “The wildfire season has lengthened in many areas due to factors including warmer springs, longer summer dry seasons, and drier soils and vegetation.”

What’s worse is that major wildfires actually contribute to the likelihood there will be more of them in the future.

“Climate change is one of the major drivers of increasing fire activity,” says the World Resources Institute, which states that “the latest data on forest fires confirms what we’ve long feared: Forest fires are becoming more widespread, burning nearly twice as much tree cover today as they did 20 years ago…

“Extreme heat waves are already 5 times more likely today than they were 150 years ago and are expected to become even more frequent as the planet continues to warm. Hotter temperatures dry out the landscape and help create the perfect environment for larger, more frequent forest fires. This in turn leads to higher emissions from forest fires, further exacerbating climate change and contributing to more fires as part of a “fire-climate feedback loop.”

This is, obviously, concerning. Existing firefighting and fire suppression techniques haven’t changed much over the years – and the threat is growing.

A new Canadian company, SkyScout AI, believes it holds part of the solution. And after seeing a demonstration of some of its capabilities recently in British Columbia, we’re inclined to agree.

Below: SkyScout Ai’s Shawn Bethel prepares a “drone tanker” at a demonstration outside Penticton. Scott Simmie photo

SkyScout AI

SKYSCOUT AI

 

So. What is SkyScout Ai – and what does its solution entail?

It starts with the leadership.

“It’s a company that’s comprised of people who want to make a difference for their communities and trying to save them as climate change drives increase in fire activity,” says Chief Operations Officer and Co-Founder Geoff Griffiths.

We’ll explore some of that shortly. First, though, we asked Griffiths for his elevator pitch.

“We’ve come up with a first-in-class vertically integrated solution that spans satellite and drone early detection. And we have the capability with our drone tanker to not only fight the fire but protect the communities from fire by pre-treating vegetation and housing with our EPA-certified fire inhibitor called Citrotech. So it really is about a fully vertically integrated approach that really focuses on interface fires – those fires that interface with communities and critical infrastructure, that’s really our niche.”

All you have to do is think back to Kelowna last year and the threat posed to the city by wildfires. The McDougall Creek Fire forced the evacuation of West Kelowna and made headlines across the country. Griffiths has seen such fires hit close to home.

“My parents were living in Kelowna during a major wildfire in 2003. Their neighbourhood burned down so it’s always been in the back of my mind – wanting to do something.”

Below: Helping detect and proactively inhibit wildfires also protects wildlife. Scott Simmie photo

SkyScout Ai

HOW IT WORKS

 

The SkyScout Ai system integrates multiple components that collectively can – as the company states – “Detect, respond, protect.” And there’s a lot of technology at play to make that happen.

Though the startup is at the demonstration stage, here’s how the fully integrated system will work.

Let’s take the city of Kelowna as an example. In a long-term, proactive scenario, SkyScout Ai would place multiple permanent drone docks at several locations around the city. Those weather-resistant docks would contain drones with high-resolution thermal sensors. They’re simply sitting, with the drones fully charged, waiting for a signal.

That signal could come, automatically, from satellite data. Satellites are capable of detecting thermal hotspots and lightning strikes. So, in this example, let’s say a lightning strike is detected near Kelowna. That data and GPS location is instantly relayed, via SkyScout Ai’s software, to one or more of the thermal drones. The docks open and the drones launch, headed to the area of interest.

If the drones pick up a thermal signature – a fire – that information can, in turn, be relayed immediately to First Responders. So a fire crew might be quickly dispatched. Because this early warning system can detect so quickly, that crew will have a much better chance of extinguishing a fledgling fire.

But, as we all know, fires can spread tremendously fast. And that’s where SkyScout Ai has some other options to help protect valuable assets. Those options include what the company calls “tanker drones” and a very unique product called Citrotech. It’s a food-grade fire inhibitor that can prevent ignition (and which we’ve seen in action).

If it’s still a small fire, a tanker drone carrying Citrotech could be dispatched to extinguish the fire by aerosolising that compound over the site. But don’t start thinking this has the power of a water bomber – it doesn’t (though the company envisions larger drone tankers in its future).

Rather, a drone carrying Citrotech on board has the capability to protect infrastructure at that wildfire-urban interface point. The tanker can quickly spray the roofs of multiple homes or other structures requiring protecting. The product dries quickly and crystallises. Once applied, it is nearly impossible for that protected surface to ignite – even if that roof gets coated with burning embers (a common way houses are ignited during wildfires). Citrotech could also be sprayed on dry vegetation near those structures, effectively creating a firebreak.

“Citrotech modifies the material its on at a molecular level and has extremely high efficacy when it’s dry,” explains Chief Commercial Officer and Co-Founder Shawn Bethel. “So it coats combustible vegetation and really just inhibits the ability of combustible vegetation to combust. You can’t get it to ignite.”

Bethel knows what he’s talking about when it comes to wildfires. He’s the former BC Provincial Fire Control Officer – who was responsible for all of BC’s firefighting resources out of the Provincial Wildfire Operations Centre. His bio on the SkyScout Ai website says “He brings 25+ years of operational wildland fire management experience including senior roles on incident command teams and aerial firefighting asset management. Shawn also brings an additional 15+ years working in the private sector spearheading global business operations with technology services companies providing wildfire mitigation solutions and fire aviation services.”

So Bethel obviously has deep expertise in wildfires, including all available suppression technologies.

“SkyScout Ai is pushing to protect the wildland-urban interface from new fires starting from ember transfers and lightning strikes,” he says. “When it’s applied in advance of anticipated new wildfire activity, it has time to dry – which is easy to do during drought wildfire weather conditions – and essentially stops fire in its tracks.”

Again – this is not a solution to extinguish a massive raging fire. But it definitely is capable of stopping small fires from becoming larger, and protecting homes, vineyards, orchards and critical infrastructure from igniting.

“This is not for Rank 6 conflagration fires. What this is for inception fires, combustible vegetation near homes, near assets, and for infrastructure and roadways. Citrotech is an excellent fire inhibiting product.”

Below: Shawn Bethel, followed by a DJI Agras T-40 during a SkyScout Ai demonstration. The company envisions larger “drone tankers” in its future. Scott Simmie photos

 

Shawn Bethel SkyScout Ai
SkyScout AI Penticton

SKYSCOUT Ai IN ACTION

 

At the end of May, 2024, SkyScout Ai brought its mobile Command Centre to a location outside Penticton, where vineyards – also highly vulnerable to wildfire – pepper the lush hills of the Okanogan Valley. That command centre (the first of many planned) contained a dock for a thermal drone, a massive spraying drone (in this case, a DJI Agras T-40), Citrotech and a control centre for the pilot(s) who will monitor autonomous operations and manually fly the tanker drone when necessary. That Command Centre, btw, is towed on a trailer. But it has been designed to quickly detach and the entire operation can be lifted by helicopter to any location where it’s required.

SkyScout Ai came to test its technology in advance of forthcoming demonstrations for the media, First Responders and other decision makers.

During testing, a small fire was set using a small fire starter brick placed on a stone. A thermal drone with RTK positioning was dispatched to locate the hotspot. In a full demo, that data and GPS location would be  automatically forwarded to First Responders or a tanker drone which would head to that spot to dispense Citrotech (which can not only inhibit, but also extinguish).

That was impressive. But there were two real show-stoppers.

In the first, a pile of dry tumbleweeds were treated with Citrotech by spraying a fine mist on them (this was done manually, but could easily be done by the tanker drone). Thirty minutes later, a pile of untreated tumbleweeds was placed directly adjacent to the treated section. Then Bethel ignited the untreated pile with a blow torch. Within seconds, flames were shooting about two metres in the air. The burn was rapidly spreading.

And when it hit the treated tumbleweed? It stopped dead. Nothing burned.

 

DRONE TANKER

 

In the second exercise, the drone tanker was filled with water. Two piles of tumbleweeds (one treated, one untreated) were again placed in a pile. The tumbleweeds were ignited and the Agras took off. From a distance of about four metres AGL, the spraying function was engaged. The blaze was extinguished in mere seconds.

So with near real-time detection using satellites and thermal drones, a tanker (or other First Responder, depending on the threat) could be dispatched literally within minutes of a lightning strike. And if that fire appeared to be growing and potentially threatening homes, vineyards, or other important infrastructure, the tanker could quickly coat these with Citrotech. Because it’s EPA-approved and food-safe, there’s no issue with spraying crops like grapes, cherries, etc. You could literally drink a glass of this stuff and be fine (though we didn’t try that).

Below: Shawn Bethel prepares to manually treat some dry brush with Citrotech

SkyScout AI Penticton Shawn Bethel

BUSINESS MODEL

 

Though the Citrotech is important, a key part of the value proposition is in the early detection and location of fires. The earlier a fire is detected, the better the odds of mitigation before it can get out of control.

Here, SkyScout Ai has the advantage of integrating that satellite data directly into its software – which can then trigger an immediate launch of one or multiple thermal drones. With RTK positioning, they can get a precise bead on the trouble spot – and send back not only thermal images but also high resolution photos/imagery that can be shared with First Responders. Depending on the size of the conflagration and location, a tanker drone can also be dispatched.

So the primary business model would be to have a contracts with cities adjacent to forests. The docks with thermal drones would be installed at strategic locations as the first line of defense, with a tanker drone on standby. There’s also the option, as mentioned, to lift the entire command centre by helicopter to a location where it’s urgently needed.

 

CITROTECH

 

The fire inhibitor, of course, could be dispensed by drone in the above scenario. But SkyScout Ai has an exclusive distribution contract for Citrotech’s product (known as Mighty Fire Breaker MFB-31) for all of Canada. It has plans to sell the product to individuals or companies that would like to have it handy for the ability to treat their buildings or property in advance of a threat. (Citrotech washes off in the rain, but there’s generally not much rain happening during the drought-like conditions that generally precede major wildfires. When sprayed prior to painting or staining, it remains effective.) So this product is definitely part of the equation.

“The secret sauce also is the addition of citrotech,” says Geoff Griffiths. “That fire inhibitor is the only fire inhibitor certified by the EPA in the US. It’s a non-toxic option that hasn’t existed before, and as you can see by our demonstration is highly effective.”

Griffiths says the timing for the SkyScout Ai solution is perfect.

“Obviously climate change is driving a lot of the wildfire activity that we’re seeing across the world. And regulators, government, private industry now realize that the standard ways they’ve approached wildfires in the past aren’t working or maybe aren’t good enough anymore. They’re open to new approaches. Add in the drone technology, satellite detection, and it’s a critical extra step in the evolution of a solution.”

Below: SkyScout Ai’s first Mobile Command Centre. The entire unit can be quickly detached from its trailer and transported by helicopter to remote locations. Image two: InDro’s Dr. Eric Saczuk prepares a DJI Agras T-40 for flight. Scott Simmie photos

 

SkyScout AI Penticton
SkyScout Ai Eric Saczuk

INDRO’S TAKE

 

We’ve been involved with wildfire operations in the past. In Kelowna last year, we were called upon to help detect hotspots indicating subterranean combustion at a landfill. Locating and extinguishing hotspots like these (or burning tree roots – which can burn for weeks and reignite new fires), are also a critical part of wildfire suppression.

When SkyScout Ai was being formed, InDro Robotics was involved.

“We’re assisting with technology on the drone side of things,” says InDro Robotics CEO Philip Reece.

“We’re providing pilots and other technical support. For example, we’re putting our InDro Command module onto the drones. This enables not only Command and Control via 5G and dense data throughput, but also the integration of all of the drone data into the SkyScout Ai dashboard. As the company grows and Transport Canada regulations change, we anticipate assisting with the R&D required for much larger tanker drones…

“Wildfires can be devastating and the models unfortunately predict will only get worse. We’re proud to be assisting with Scout Ai’s innovative solution.”

You can learn more about Scout Ai right here.

The new InDro Cortex: Amazing power in a tiny package

The new InDro Cortex: Amazing power in a tiny package

By Scott Simmie

 

The InDro Robotics engineering team, as always, has been hard at work. And we’re particularly pleased with our latest R&D breakthrough: The InDro command module, which we’ve named InDro Cortex.

It’s a small but exceedingly powerful box that will immediately enable robotic platforms to reach the next level. It’s robot-agnostic, meaning you can integrate Cortex with any ROS-based robot (which is pretty much all of them).

And what can it do?

A better question might be: What can’t it do? And the answer there is “not much.”

Below: An InDro Robotics Cortex mounted on a Unitree B2 quadruped. Cortex enables remote teleoperations, autonomous missions – and much more…

InDro Control Module ICM

BACKGROUND

 

There’s some important history here – which also tells you something about the InDro Robotics ethos.

In November of 2021, we released a very popular product. InDro Commander was developed in response to the needs of clients who wanted to be able to quickly turn a platform into a smart, easily customisable robot capable of teleoperation over 4G or 5G. From developers and academics through to large technology companies, our clients had been requesting such a solution. In fact, even in the development of our own products we identified the need for an all-in-one solution to speed robot integration and enable teleoperation.

“Our engineering team came up with the concept of the InDro Commander after integrating and customizing our own robots,” said Philip Reece, CEO of InDro Robotics, when the product was launched. “We realized there were hurdles common to all of them – so we designed and produced a solution. Commander vastly simplifies turning a platform into a fully functioning, teleoperated robot.”

Commander, as this webpage explains, “is designed to allow developers to quickly customize their own robotic solution. The following are common additions that can be easily added to any Commander-controlled robotic system: LiDAR (2D/3D), PTZ camera, thermal cameras, wireless charging, IMU, RTK.”

Commander, quite simply, takes the pain out of integration.

And how does it do that? Well, it ships with a powerful EDGE computer pre-loaded with ROS1 and ROS2 folders. It also contains multiple USB ports, allowing for the instant addition (and recognition of) pretty much any sensor you can throw at it. It allowed clients who were previously spending a ton of time on integration to simply attach Commander to the robot’s power supply, start plugging in sensors, and then remotely operate via a secure dashboard.

When it was first released, Engineering Lead Arron Griffiths dubbed it “ROS-in-a-Box.” We later changed that to Commander, but here’s the splashy video released at the time in advance of the big IROS show, where Commander made its debut:

SMARTER, FASTER, SMALLER

 

At InDro, we have a motto of “Invent, Enhance, Deploy.” But deployment doesn’t mean we rest on our laurels. InDro’s engineers continuously look at ways to enhance existing products. And that’s exactly what we’ve done with Commander. We asked ourselves: How could we make this even better?

“InDro Cortex grew out of the idea of making a general purpose backpack/module that any OEM could put on their motorized product – everything from a ground robot to even a golf cart, drone, car, truck or RC platform,” says Engineering Lead Arron Griffiths. “That single module makes any platform ROS-enabled, AI-ready and 5G connected.”

A lot of work went into this. One of the biggest tasks was designing and developing four new boards that pack a lot of AI compute power (and other features) into a tiny space. There are separate boards for EDGE computing, teleoperation data transfer, and sensor integration. There’s also a separate WiFi system.

“And of course, it can run on either a public or private 5G network,” says InDro Vice President Peter King.

And did we say size matters? The small size of Cortex means it can be placed on virtually any robot – from the smallest quadruped to the largest AMR. It can even be fitted to a drone.

“It’s tiny so it fits on everything. So basically we can turn any platform into a very powerful robot without all the time and hassle,” adds King.

Below: Much of the magic of InDro Cortex lies in the design, development and testing of four new circuit boards:

InDro Control Module ICM

AUTONOMY AND INDRO CONTROLLER

 

InDro Cortex is a powerful solution on its own. But pairing it with our new InDro Controller provides incredible synergy.

We just wrote a fairly comprehensive post about InDro Controller, so if you’d like more details you can check this out. But in a nutshell, InDro Controller is a powerful desktop UI for operating any robot. With a highly secure data connection, InDro Controller automatically senses all key parameters of any robotic device. It will automatically detect any sensors, providing a data feed from all of them with minimal latency.

“It can handle all sorts of data,” says Front-End Developer RJ Bundy. “It doesn’t matter if the robot has standard or custom sensors, InDro Controller can automatically detect and visualize them. For example, if you added a radar unit to an existing robot, the system will pick up on that immediately.”

InDro Controller provides the operator with a highly customisable dashboard for carrying out complex missions. It will also keep track of any missions manually carried out, and make them repeatable as autonomous missions.

And that autonomy? InDro has created two different autonomy software stacks. One is for outdoor missions that rely on GPS; the second is for indoor missions like SLAM in GPS-denied environments. That software comes with InDro Controller – and is also loaded onto the module. So the two key elements of this system – InDro Controller and InDro Cortex – have been made to operate seamlessly together.

Anyone should be able to configure and control Cortex for their product, and indeed, their solution,” says Griffiths.

Below: A look at the powerful InDro Controller UI dashboard. The Controller software has been created to be an ideal match for InDro Cortex and is easy to operate.

Teleoperations with Robots

INDRO’S TAKE

 

We’re extraordinarily proud of the work our engineering team has put into Cortex – as well as InDro Controller. We believe these two, in combination, set a new bar for both robot integration and complex remote teleoperations.

“The design and creation of the boards used in Cortex was a significant technical challenge – and a significant achievement. The same can be said of our two new autonomy stacks,” says InDro Robotics CEO Philip Reece.

“Whether it’s a ground robot, a drone, or some other device that requires high processing power and minimal latency with all the features enabled by ROS, Cortex allows developers to quickly transform virtually any platform into a powerful autonomous robot with minimal effort.”

Interested in learning more? Of course you are. Contact our Head of R&D Sales, Luke Corbeth, right here.