FLYY’s Kate Klassen on the importance of drone training

FLYY’s Kate Klassen on the importance of drone training

By Scott Simmie

 

Here’s a quick quiz for you: How many drones are registered with Transport Canada?

Take your best guess.

The answer? According to the latest Transport Canada RPAS Team Newsletter, the number is 86,131. That’s a lot of drones. Many of these – we’re confident the majority – are recreational/hobbyist machines. But the growing service provider sector is also a big contributor.

Quiz Number Two: How many Special Flight Operations Certificates were issued by Transport Canada in 2022? The answer here is 814, with the following breakdown:

  • Beyond Visual Line of Sight Operations: 62
  • Flying higher than 400 feet AGL: 48
  • Flying in or near Department of National Defence airspace: 56
  • Special Aviation or Advertised Events: 172
  • RPAS weighing over 25 kilograms: 41

The math-inclined might notice those numbers don’t add up to 814. The final category – with 435 SFOCs issued in 2022 – is for Foreign Operators.

“It’s pretty obvious, but there’s been an incredible growth in the use of drones across all sectors,” says Kate Klassen, a licensed traditional aircraft pilot and flight instructor. She’s also InDro’s Strategy and Implementation Specialist.

“And based on what I’ve seen – including my work with the Canada Drone Advisory Committee (CanaDAC), these numbers will continue to grow for many years to come.”

Below: A professional drone operation

 

LICENSED PILOTS

 

Along with the growth in registered drones, there’s been a commensurate growth in the number of licensed RPAS pilots in Canada. Transport Canada has issued 86,709 Basic Pilot Certificates, and 10,060 Advanced Pilot Certificates. Advanced RPAS Certificates allow a pilot to fly in controlled airspace, closer than 30 metres to bystanders, and nearer than 3 NM (5.6 km) to airports and 1 NM (1.9 km) to heliports.

And of that number? Roughly one in eight received their training from InDro’s Kate Klassen.

Klassen was a pioneer in the training world, developing an online course that was both educational and entertaining. She did that prior to joining InDro, and some 10,000 people took her online course. That’s a phenomenal number.

And she’s at it again, with a series of online courses at FLYY.

We’ll get into FLYY – and the importance of training – in a moment. But first, let us more fully introduce you to Klassen.

She’s a commercial pilot and a flight instructor for both airplanes and RPAS. She’s been involved with aviation for the past 16 years and holds a Management of Technology MBA from Simon Fraser University. Klassen serves as a Director with the Aerial Evolution Society of Canada (formerly Unmanned Systems Canada/Systèmes Télécommandé Canada) and was a Director for BC/YK with COPA (Canadian Owners and Pilots Association). She was also Co-Chair of Canada’s Drone Advisory Committee (CanaDAC), working closely with Transport Canada. She’s an expert in regulations and training.

Plus, she’s an amazing educator.

Below: A screen grab of Klassen from one of the FLYY instructional videos

Kate Klassen FLYY Instructor

WHY BOTHER WITH A COURSE?

 

That’s a good question. Especially when there are options like YouTube, where you can find plenty of videos of people in their basements offering what they say are the knowledge requirements to obtain your Basic or Advanced RPAS Certificate.

We put that question to Kate.

YouTube can be a great resource, but the challenge is knowing the accuracy and validity of the information,” she says.

“You want to trust the training provider, know their credentials and that they have the experience and expertise to be the one providing the training. In addition to video modules, FLYY also provides downloadable resources, interactive lessons and the ability to download for offline viewing.”

 

MORE THAN THE BASICS

 

What differentiates FLYY from some of the other online offerings?

For starters, Kate has deep expertise as both a commercial and RPAS pilot, as well as being an instructor. So you can have confidence you’re getting the Transport Canada knowledge requirements that ensure you’ve getting the fundamentals you need.

But FLYY offers more than just the tools to earn your Basic or Advanced RPAS Certificate.  The website has a module (and templates) to help you create your own Standard Operating Procedures, including a comprehensive pre-flight checklist. Another popular offering is the Flight Review preparation package. That package, which includes typical questions an Advanced RPAS Certificate candidate would receive at their in-person Flight Review, is designed to help ensure you pass that final step your first time. (And, given that most in-person Flight Reviews cost $200-$300, you really do want to pass your first time around.

 FLYY also offers Flight Reviews, regardless of your location in the country. Plus, once you’re registered with the site and taking a course, you’ll have access to an internal social hub where you can ask questions, post photos, and interact with other students and graduates of the FLYY program.

“I’m always happy to answer questions from students – and we get some good ones,” says Klassen. “This is something else you won’t get if you rely on a free online course. The courses have been carefully designed to ensure student success, and that’s also something I’m personally very much invested in. In fact, I like being a phone-a-friend lifeline for operators. It keeps me on my toes and problem solving at the pace of the industry.”

 

SPECIALIZED SKILLS

 

Drones have come a long way in the past decade. Like, a *really* long way. Think about it: DJI released its first Phantom in 2013 – a machine that required a separate GoPro in order to capture images. Now you can purchase a sub-250 gram drone with amazing range, connectivity and video/still qualities for less than $1,000.

But – particularly for those planning to become service providers or seeking professional employment – the knowledge base required has become more demanding. Gone are the days when having 50 hours of recreational drone flights might open the door to a job. Increasingly, employers are looking for people with highly specialised skills. They want candidates with experience flying thermal missions, capable of creating a LiDAR 3D digital twin – and much more.

Below: An Aerometrix methane-sniffing drone. Increasingly complex drones and drone operations require highly skilled pilots

 

Aerometrix Methane Drone

MICRO-CREDENTIALS

 

The future of training, at least from Klassen’s perspective, will involve obtaining credentials for operations requiring specific skillsets. These would be short, focussed courses – online or in-person – that would provide pilots with the skills they’ll need to carry out more complex flights (and with more complex sensors). Upon successful completion, a pilot would receive a certification that will become recognized as the standard for that industry.

Geospatial Information Systems (GIS), photogrammetry, mapping, volumetric calculations, BVLOS flights are just a few examples where Klassen envisions Micro-Credential courses would be the most effective route to obtaining skills.

“These are definitely skills that are pre-requisites for many drone jobs and require specialized training,” says Klassen. “Upon successful completion, a pilot would receive a certification or badge that’s recognized by the industry.”

Klassen is currently planning Micro-Credential courses for FLYY.

“Micro-Credentials will one day be just as important in this field as obtaining your Advanced RPAS Certificate,” says Klassen. “And with the new facility that’s coming in Ottawa at Area X.O, we’ll have a location where training, testing and evaluation for highly complex operations can take place in a controlled environment.”

(FYI, we took a deeper dive into the case for Micro-Credentials here.)

 

ADVANCED TESTING

 

That new site, which we’ve written about here, is designed for both drones and ground robots. Drone pilots will face a demanding NIST (National Institute of Standards and Technology) course, built to the exacting specifications created by ASTM (the American Society for Testing and Materials). It will also feature a large enclosed, netted area where specialised drone training and testing can be carried out. Complex testing or failsafe evaluation – missions that might normally require a Special Flight Operations Certificate – can be safely carried out within that netted enclosure without the need for special permissions.

The facility, which will open in June, has been funded by Invest Ottawa as a strategic investment in Area X.O. The facility will be operated by InDro Robotics. It is the first of its kind in Canada.

For the first time we’re seeing a ground and air robot (drone) training and testing space and I think we’ll see those technologies work more closely together in the future, too,” says Klassen. “As an educator, I’m excited for the course offerings we’ll be able to put together. So much thought has gone into the details and facilities in this space and I can’t wait to see how it’s received.”

Below: A look at the new facility during construction in late May.

 

INDRO’S TAKE

 

InDro Robotics was one of the first companies in Canada to offer specialized drone training – working with law enforcement and First Responders onsite and at Salt Spring Island. InDro takes training very seriously, which is why we partnered with Kate Klassen to create FLYY.

“We share Kate’s belief that demand for complex drone training and testing will only increase. We also agree that Micro-Credential courses and badges will be an important offering for those wishing to take their skills to the next level,” says InDro Robotics CEO Philip Reece.

“Between Kate’s excellent FLYY program and the forthcoming Area X.O facility, we’ll be creating and delivering cutting-edge training customized to meet growing industry demands.”

Want to get started with training now? Head on over to FLYY, then use the code “springisintheair” at checkout for 10 per cent off.

What InDro does

What InDro does

By Scott Simmie

 

Have you ever wondered: What exactly InDro Robotics does?

The answer might surprise you.

InDro is often described as a research and development company. While accurate, that isn’t very explanatory. So we’ll give the first word to CEO Philip Reece.

“InDro Robotics does a lot of different things – ranging from product development to service provision to creating and building solutions for global clients,” he says. “But all of these tasks have some things in common:

“This is an engineering-first company – dedicating to inventing, enhancing and deploying technologies and products that make difficult work easier and more efficient. Customers purchase these technologies, and we are also a service provider using these InDro innovations.”

That’s a good starting point. But what does that actually look like? We thought a good way to explain this might be to look at some of the milestones the company has accomplished between September of 2021 and 2022.

There are, unfortunately, some that we’re prohibited from telling you about due to non-disclosure agreements with clients. But even without those, it’s been a very productive year.

InDro Commander

We’ll start with something that has allowed many clients to quickly customise and deploy ground robots. You’ll see this in the image below; it’s the module sitting directly on top of the robot chassis below. Specifically, it’s toward the front of the chassis above the InDro Robotics logo.

CANSEC Sentinel

The process

 

There’s an interesting backstory here. One of the things InDro is known for is building custom robots designed for specific tasks. But building robots – especially building multiple robots with different functionalities – is hard work.

We have a head start on this process, because we use the excellent platforms built by AgileX, China’s leading producer of quality robotic platforms and locomotion systems. But – and you can ask any robot builder – the real challenge is building robots that do things besides move.

You need to integrate sensors – everything from optical and thermal sensors to LiDAR and even arms with end effectors. You’ve got to figure out how to power these sensors and pull their data – a task that involves much more than wiring. With most robots, it means finding and integrating the proper software from the Robot Operating System libraries (ROS and ROS2). Then you generally need an onboard computer to process that data – along with coming up with a solution to moving that data from the robot to somewhere else.

Our engineering team thought there had to be a better way. In particular, lead engineer Arron Griffiths envisioned a module that might act like a kit to make this process much, much easier. InDro Robotics then developed and tested a module that could be added to most ground robotic platforms. It contains a powerful Jetson computer for onboard EDGE processing, multiple USB slots for adding peripheral sensors, two wide-angle cameras to give the operator a 360° view of the robot’s surroundings, and more.

That “more” includes the ability to operate the robot, in realtime, over a 5G or 4G cellular connection. The browser-based console provides data from all sensors in a clean and easy to navigate dashboard. And the operation? You can simply use an Xbox controller and operate your newly integrated robot from down the street – or across the country.

You can learn more about InDro Commander in this story. But the point here is that our engineers identified a problem and came up with a solution. Many of our products have a similar origin: Thinking of a new way to do things that’s easier and more efficient.

InDro now regularly manufactures and ships Commanders to clients globally, providing the ability to rapidly customise any ground robot utilising the Robot Operating System – without all the hassle. (If you’re interested in more details, feel free to reach out to Account Executive Luke Corbeth.)

Now that you’ve got the Commander basics, let’s take a brief look at our ground inspection robot Sentinel.

 

InDro Sentinel

Location, location, location

 

The phrase doesn’t just apply to real estate.

Many companies have valuable assets in remote locations. To inspect such locations generally means dispatching one or two employees to make the often-long trek and then simply walk around and ensure things are working as they should be. They’ll check for any signs of corrosion or wear, perhaps watch and listen for electrical arcing or test for thermal anomalies, even watch out for signs that wildlife has been chewing on wires or building nests in locations that might pose a risk. Inspectors are also frequently dispatched following violent weather events.

InDro started thinking about this problem, with a particular focus on electrical substations – often-remote and uncrewed facilities where the current from high-voltage transmission Iines is stepped-down for delivery to consumers. What if a robot could be placed on site that could carry out these inspections remotely? In fact, what if InDro took the InDro Commander module and customised a new ground robot for the task?

That’s how Sentinel came to be. The tracked robot features a 30x optical tilt-pan-zoom camera, a thermal sensor – along with any additional sensors clients would like incorporated. Sentinel can autonomously return to its wireless charging base and can literally be left on its own for months. An operator can remotely carry out regular inspections, read gauges, capture high-resolution photo and video, check for thermal anomalies – and generally accomplish nearly everything that could be carried out by a human inspector without the time and expense. Plus, Sentinel can be dispatched within minutes when necessary.

You can read more about Sentinel here. The robot also recently took part in exhaustive testing at the Electrical Power Research Institute’s (EPRI) substation test facility in Lenox, Massechusetts.

This is a great example of where one InDro innovation – the Commander module – helped pave the way for a second innovation: Sentinel.

It also contributed to a third: The ROLL-E delivery robot:

 

InDro London Drugs Roll-E

ROLL-E

 

ROLL-E is another beneficiary of the InDro Commander invention. This delivery robot is capable of remotely teleoperated urban deliveries, such as from a retail outlet to a home.

InDro has already completed trials with London Drugs at a Victoria location, delivering goods purchased online for curbside pickup.

InDro now has a second-generation ROLL-E, which the company will be unveiling shortly. ROLL-E 2.0 has been purpose-built to maximize integration into an urban environment with features like signals, brake and running lights – and a series of cameras (including depth perception cameras) to provide the operator with a 360° view of ROLL-E’s surroundings. Goods are contained in a secure cargo bay that opens only when the recipient interacts with a touch-screen.

And that’s not all.

InDro is currently building the InDro Backpack – a smaller version of Commander. Its purpose? To offer the same capabilities for teleoperation and high speed data transmission on the Unitree GO1 and its other quadrupeds.

Here’s a brief video demonstrating teleoperation of the GO1 as the backpack was under development; InDro anticipates the bolt-on 4G/5G system will be ready for clients later this fall.

 

What about drones?

 

Good question. While we were developing Commander, a similar but separate project was underway for aerial robots.

Ahmad Tamimi Area X.O

InDro Capsule

 

See that guy on the right? That’s Ahmad Tamimi, an engineer at InDro’s Area X.O location in Ottawa.

When this photo was taken in the fall of 2021, he was deep into something called NERDS (Network Enhanced Realtime Drone project). It was a technology challenge in conjunction with the Ontario Centre of Innovation, Ericsson and the ENCQOR 5G network – a testbed corridor that runs through Quebec and Ontario.

You can find full details of that project here – and a link to InDro’s White Paper on NERDS here. But in a nutshell, Tamimi created a module similar to Commander, only for Enterprise drones using the Pixhawk flight controller. It enables operations over cellular, including real-time dense-data uploads directly to the cloud during flight. It also broadcasts to nearby traditional aircraft that a drone is operating – a tremendous boost to BVLOS flights.

Here’s a picture of that module on top of our Wayfinder drone:

InDro Pilot NERDS

InDro Pilot

 

InDro didn’t stop there. The company created an entire software suite – InDro Pilot – for Enterprise drones (and, specifically, drones using the InDro Capsule).

That software makes it a snap to add and integrate other sensors onto drones and carry out low-latency flights over cellular networks. As with Commander, sensors can simply be plugged in to InDro Capsule, and the dashboard allows for drag-and-drop sensors modules to be added to the software suite. Want a winch? Simply add on the winch module and all operational controls and parameters are added to the InDro Pilot software. A robust and encrypted link between the InDro Ground Station and the drone ensures that any data collected remains secure. 

This project was completed in that 2021-2022 window we established earlier. InDro is currently creating a smaller and lighter InDro Capsule for commercialization of the entire InDro Pilot system. 

Here’s a screen grab of the winch software module:

InDro Pilot Winch

One more time

 

And here’s a look at the complete system…

Again, if you’d like a more thorough look at that system you’ll find far more details here.

InDro Pilot

That’s not all…

 

As mentioned, it’s been a highly productive year at InDro. We’ve flown drones in the NRC Wind Tunnel in Ottawa for research on urban wind tunnels. The company has partnered with UBC, Honeywell and others on a major research project involving flights over 5G and using AI software to precisely predict energy demands and costs of any planned drone mission.

As drones begin deliveries at scale in the future, the data being obtained about the capabilities of 5G networks to handle multiple drones simultaneously – as well as costs – will be tremendously useful to the industry-at-large.

All this, while carrying out service provision for clients on a global scale, including this mission in Saudi Arabia. (That’s our photogrammetry/GIS specialist Eric Saczuk in the photo).

InDro in Saudi Arabia

Before we forget…

 

InDro was also in the news this year for its role in the Drone Detection Pilot Project at the Ottawa International Airport.

During the protests in the nation’s capital, data obtained by the system revealed that scores of unauthorized drone flights were taking place in restricted airspace – including above Parliament Hill, over 24 Sussex Drive, and even near embassies and other sensitive locations.

InDro takes part in this project – and supplies the drone detection equipment for free – because there’s valuable data being obtained that contributes to both safety at YOW and informed policy and procedures.

In fact, the news even made the cover of WINGS magazine:

InDro Robotics & YOW Drone Detection Pilot Project

Wait, there’s more!

 

Hard to believe, but there is (and congrats for sticking through this long-ish read!).

InDro reached several other milestones between the fall of 2021 and 2022. The company can’t, unfortunately, share details of these due to non-disclosure agreements. But innovative solutions have been created for global clients. In one example, a prototype robot was so successful that InDro received orders for many more.

On top of that, the company has worked closely with industry and regulatory partners during this period, including delivering InDro Pilot-enabled drones to Transport Canada and assisting RPAS parachute manufacturer AVSS with testing of its latest product. 

AVSS Parachute Drone system

InDro’s Take

 

With an agile and motivated team, InDro Robotics has created multiple new and innovative products in the course of a single year. Some of these were created specifically for clients, while others were organic in nature. The development of InDro Commander has paved the way for multiple robots (Sentinel, ROLL-E, ROLL-E 2.0). In addition, the company has shipped custom Commander-enabled robots to clients – including one fully customized for Solar Farm inspection. Many clients are now order Commander modules to make the customization of their own ground robotics platforms a vastly easier process.

In addition, the development of the InDro Capsule and InDro Pilot system for Enterprise drones will soon allow clients to easily customize their RPAS with additional sensors, along with secure high-data bandwidth (direct to Cloud) and remote teleoperations via console over cellular networks. Stay tuned for more on that.

CEO Philip Reece got the first word in this summary; he also gets the last:

“I’m justifiably proud of our team for the multiple milestones we’ve surpassed during the past year,” he says. “InDro has created numerous products – and participated in multiple projects – where we’ve been able to push the envelope. Every single one of these products and processes uses technological innovations to make hard jobs easier, or to significantly expand the capabilities of drones and robots. The team has really hit its stride.”

Hopefully, this gives you a much better idea of What InDro Robotics Does. And why we proudly call ourselves an R&D company.

 

Methane detection via drone with Aerometrix

Methane detection via drone with Aerometrix

By Scott Simmie

 

There’s no denying climate change. Whether it’s the recent and devastating floods in Pakistan, fires in Portugal – or the multiple rivers globally that have dropped to historically low levels – the planet’s equilibrium has been changing.

While carbon dioxide emissions get much of the press, methane is one of the most potent contributors to the problem of greenhouse gases.

“Methane has more than 80 times the warming power of carbon dioxide over the first 20 years after it reaches the atmosphere,” states the Environmental Defense Fund.

“Even though CO2 has a longer-lasting effect, methane sets the pace for warming in the near term.”

That’s a key reason why the detection of methane emissions has become a priority. It’s also a large part of why Aerometrix – a company specialising in methane detection using drones – was formed.

Below: One of the early Aerometrix rigs for methane detection. The sensor is at the forward end of the counter-weighted rod to keep it clear of prop wash.

Aerometrix Methane Drone

Aerometrix

 

Before we get more into what Aerometrix does (and how it does it), we should point out there’s an InDro Robotics connection here. InDro CEO Philip Reece, along with Michael Whiticar, founded the company. Aerial operations for Aerometrix are carried out by InDro Robotics.

“We felt there was a void in the marketplace for the detection of methane and other gases,” explains Reece. “We also wanted to approach this from an engineering-first perspective, ensuring that we were using, and even developing, the best available sensors and workflow.”

Aerometrix uses two different types of sensors for methane detection. The first is the proprietary GasMap sensor, which is capable of detecting methane in parts per billion (ppb). This laser-based sensor had its origins at NASA’s Jet Propulsion Laboratory, where it was developed for Mars missions. Aerometrix has further refined that sensor and has used it to accurately map methane emissions at petrochemical plants, gas wells, landfills – and even on agricultural sites. (Animals, particularly cows, are a significant methane source.)

“GasMap uses laser spectroscopy,” explains Peter Sherk, an electronics engineer with Aerometrix. “It uses the absorption of lasers by methane to detect concentration. And it’s very precise – detecting not only its presence, but how much there is at a given point in time and space right down to parts per billion.”

The sensor maps methane (and other gases) by flying horizontally through the plume. When multiple passes at different altitudes have been completed, a “curtain” is obtained. (Don’t worry, we won’t ask you to carry out the calculation – besides, our FluxCurtain software does that.)

Aerometrix

Zig-zag

 

As mentioned, the drone flies horizontally through the plume – with each parallel flight at a slightly higher altitude. The sensor is constantly capturing georeferenced data which Aerometrix then runs through software.

In the images below, you’ll see that zig-zag flight pattern. The blue lines at the bottom indicate methane concentrations. Not surprisingly, those concentrations begin to dissipate at higher altitudes as the methane plume mixes with the surrounding air.

The second image is what’s referred to as the actual “Flux Plane” – where the methane concentrations are represented visually by colour.

Aerometrix Methane flight

Efficiency

 

Though pipelines and facilities that handle methane are obvious places where detection is required, local city dumps are also interested in detecting – and even capturing – methane produced by buried garbage. But many are unaware of the efficiency and accuracy of using sensors like the GasMap mounted on a drone.

“A lot of landfills are doing methane detection already,” says Sherk, “but they’re using far less convenient methods. A lot of the time there’s someone walking back and forth with handheld sensors. With larger landfills any sort of grid pattern will take days and days – and walking over an old landfill can’t be a really healthy operation.Operating a drone is vastly more efficient. And the GasMap sensor is capable of detecting not only the presence of methane, but its concentration at various altitudes as the gas forms a plume and mixes with surrounding air.

Some landfills have been able to not only capture but exploit methane that was previously escaping. The Capital Regional District on southern Vancouver Island has been running a power generating plant on-site at the Hartland Landfill, fuelled solely by captured methane produced by decomposing garbage. It’s been doing so since 2004, creating enough energy to power 1,600 homes.

Recently, the volume of methane produced by the landfill has increased, and the power plant is nearing the end of its operational life. In 2023, the landfill will switch gears and process the biogas into natural gas – selling the product to FORTIS BC.

Kudos to the Capital Region District for having such foresight; the example also highlights how captured methane can be put to positive use.

Aerometrix has carried out surveys now at numerous landfills hoping to capture or otherwise mitigate methane emissions. Using FluxCurtain software, its reports turn what was previously an invisible problem into clear, actionable data that provide a clear picture of emissions and concentrations.

Another sensor

 

We mentioned a second sensor also being used by Aerometrix. It’s called the LaserScan, and it’s a very lightweight sensor that also uses laser spectroscopy to detect the presence of methane.

Unlike the GasMap, the newer sensor is able to measure vertically. In other words, the drone can be flying directly above a plume and take a measurement straight down to the ground. While it’s not quite as precise as the GasMap sensor (parts per million, rather than parts per billion), the LaserScan does have an advantage when it comes to speed.

Because it does not rely on flying through the plume, the LaserScan is ideal for detecting emissions over large areas. By simply flying a grid pattern at a single altitude, it can rapidly identify emissions. At an altitude of 98.4′, it’s capable of detecting 500 ppm of methane with a plume diameter of one meter.

“While the Falcon is less precise than the GasMap sensor, it has a definite advantage when it comes to speed,” explains Keegan Richter, a mechanical engineer with Aerometrix.

In cases where greater precision is required, Aerometrix can fly two missions: The first with the LaserScan to rapidly detect the location of emissions – particularly over large landfills – followed by GasMap for parts-per-billion accuracy.

InDro’s Take

 

We obviously have a special interest in Aerometrix, since InDro’s pilots and drones carry out its aerial missions.

Not surprisingly, since CEO Philip Reece is a co-founder, the mission of Aerometrix closely aligns with InDro’s guiding philosophy: Developing and utilising technology to increase efficiency and – whenever possible – contribute to positive change.

Arguably, the dramatic and apparently escalating shifts we’ve seen to global climate patterns are one of the most pressing problems on the planet. Methane is a key contributor to those changes.

The ability of Aerometrix to accurately detect methane emissions has already helped clients cap leaks and examine other methods for capturing this gas before it hits the atmosphere. Its missions have also meant that human beings are no longer exposed to hazardous environments while capturing data using handheld devices.

In our mind, those are both positive outcomes.

Interested in more information? You can contact Aerometrix directly here.

Indro Robotics at AUVSI’s XPONENTIAL show

Indro Robotics at AUVSI’s XPONENTIAL show

Welcome to the Greatest Show on Earth, or at least the biggest when it comes to drones and robots.

The Association for Uncrewed Vehicles Systems International (AUVSI) is back with a full-scale, in-person XPONENTIAL show for the first time since the global pandemic. With members in more than 60 countries – and an ever-increasing number of companies offering products – this is considered the event to attend. The trade floor, when it opens April 26, will showcase products from the world’s largest manufacturers…right through to some of the smallest.

Only exhibitors were allowed in today, setting up their displays. You can get a tiny glimpse of the floor in the background in the following shot. And that woman with the yellow tie? She means business. No one on the floor without an exhibitor’s pass. Don’t even ask.

AUVSI XPONENTIAL

As usual, there were some smaller educational seminars and panels on a day when a lot of people were still registering. To give you a sense of scale, check out how large the registration area is. Given that it takes only about a minute to get your pass, maximum, this is massive.

AUVSI XPONENTIAL

Sessions

 

We took in a few sessions today, just to get warmed up for the main event. A couple of them had some pretty interesting little nuggets.

For example, there was a panel called “When does a vehicle become the driver?” which raised some intriguing points we hadn’t considered. For example, disability activists are keen to have a voice at the table for autonomous vehicles due to the obvious advantages they will provide for those unable to drive a regular car. Wiley Deck, the VP of Government Affairs and Public Policy with the autonomous trucking firm Plus, said he’s heard many with disabilities say “‘We want to be in at the front door, and we think we deserve that’.”

Makes sense. And, arguably, autonomous vehicles might be a boon for elderly people whose decision-making skills and reaction times have diminished with age. But when it comes to legislation, that raises another question.

“Fewer and fewer people will be human drivers,” said Kelly Bartlett, a Connected and Automated Vehicle Specialist with the Michigan Department of Transport (and a guy who thinks about laws a lot).

 “We’ve got to decide, who is that person? Maybe it’s a Level 4 or Level 5 (autonomous vehicle). Who is that person? Do they have to know traffic laws, for example?”

Interesting question, and one Barlett said will have to be tackled by legislators at some point in the future.

 

Autonomous trucking will take time

 

One of the other striking things from the panel, considering the capabilities of vehicles like those from Tesla, is that the world of autonomous long-haul trucking isn’t coming anytime soon.

If the route were a simple A-B, things would be easier. But the reality, said panelists, is that most of the millions of trucks hitting the road daily in the US have complex routes. They need to stop for fuel or, in the future, for charging. They need to cross states that have different laws. And, just as there are concerns with drones conflicting with traditional aviation, regulators and the public will need to be satisfied these vehicles are truly safer – and in all scenarios.

For example: What would happen if a front steering tire of an autonomous truck blew out at highway speeds? We don’t actually know yet, though at some point such tests will be carried out on tracks. Think of how many scenarios might be involved – how does an autonomous vehicle react to an oil slick? When being towed?

Lots to think about. Speaking of which, when do you predict autonomous trucks will be ubiquitous? Five years? Ten?

According to the panel, you’d be premature.

“It’s decades away,” said Wiley Deck. “If you’re entering the industry now, you’ll be able to retire as a trucker.”

There was also an amazing story about one of the first autonomous vehicle demonstrations, way back in 1925. Too long to go into here, but there’s a fascinating read here, if you’re inclined. It even involves Houdini.

 

Blue sUAS

 

You may have heard of Blue sUAS. It’s a list of drones that have been vetted by a Department of Defense branch called the Defense Innovation Unit to comply with the National Defense Authorization Act in the United States. You might think of them as an “approved” list of non-weaponised drones for use by the military, or those using federal funds. Drones using major components manufactured in China are excluded, including DJI. There are also fairly rigid cybersecurity hurdles the drones must pass.

But that has led to some confusion – and concern among organizations that cannot afford the vetted drones. Shelby Ochs, seen in the next photo, is the Program Manager, Autonomy, with the Defense Innovation Unit. They’re the folks that vetted the first list of Blue sUAS drones. At the moment, that list contains eight drones, listed here.

 

Blue sUAS

Problem is, when the Defense Innovation Unit first came out with its initial list of Blue sUAS, many people in government, law enforcement, and – albeit rarely – some commercial companies, believed these were the only drones they could purchase.

“People thought this was a prescriptive list,” says Ochs. “So there were a lot of agencies in the federal government who said: ‘If they’re good enough for the Department of Defense, they’re good enough for us, too.'”

That, in his opinion, was a mistake. And he emphasized the following point multiple times during his presentation. In fact, he said it at least three times:

“Any company can sell any drone to any organization, so long as it meets their administrative requirements.”

So that cleared things up. Also of note, Ochs says the Defense Innovation Unit has been looking at adding more drones to the list – and another 15 US-made drones are currently under consideration. He also predicts that average prices of US-made, Blue sUAS products will come down over time.

That’s it for now. Check in later, as we’ll be posting lots of cool content from XPONENTIAL.

 

Draganfly sells, donates drones for use in Ukraine

Draganfly sells, donates drones for use in Ukraine

By Scott Simmie

The use of non-military drones in Ukraine has jumped significantly since the Russian invasion began. Consumer products, particularly DJI drones, have been widely used by both sides in the war for situational awareness and identifying combatant positions. They’ve also been used extensively by journalists to help convey the scale of the devastation, particularly the destruction of civilian targets.

Now, North American drone manufacturer Draganfly has announced it will be sending 10 drones for use by Ukrainian forces. The drones – five Medical Response drones and five for Search and Rescue – have been purchased by a third party as a donation to the non-profit relief agency Revived Soldiers Ukraine. They are part of an initial order (subject to conditions) of up to 200 units destined for the conflict zone.

We wanted to learn more about the drones and how they’ll be used, so we sat down virtually with the CEO of Draganfly, Cameron Chell.

Before there was DJI in Shenzhen, there was Draganfly in Saskatoon, Saskatchewan (Canada). Initially founded by Zenon and Christine Dragan in 1998, the company released its first commercialized quadrotor the following year. In 2001, it released the first multi-rotor UAV with an integrated camera system.

It wasn’t long before some early adopters in law enforcement started embracing the utility of drones, using them to help document and clear accident scenes and for Search and Rescue operations.

In fact, in 2013 a FLIR-equipped Draganfly drone helped locate someone who had sustained a head injury in an auto accident and wandered away in freezing temperatures, suffering severe hypothermia. It’s credited as the first drone rescue to save a human life. In fact, that drone now resides in the Smithsonian National Air and Space museum. The case was written about here.

 

Cameron Chell, Draganfly

In July of 2015, Draganfly was acquired by a US technology firm, which is how Chell came into the picture. He says the company’s connection with First Responders has only grown – and is very much part of Draganfly’s identity.

“Draganfly has sold more than 9000 drones or drone systems to public safety,” he says. “We have a strong history of being of service, or trying to be of service, to the First Responder community. That’s a big piece of culture in the organization.”

And that’s why, he says, the shipment of drones to Ukraine is a good fit.

 

Drones for Ukraine

 

The drones were actually purchased by channel partner Coldchain Delivery Systems which specializes in packaging for temperature-sensitive products with an emphasis on medical supplies. Coldchain also has a $750,000 contract with Draganfly for a multi-phase project that could ultimately bring 9-1-1 dispatched drone medical deliveries to the entire state of Texas.

Cold Chain wanted these drones purchased for Revived Soldiers Ukraine, a non-profit agency playing a significant role in assisting during the conflict. (In March alone, RSU provided goods ranging from ambulances and portable X-Ray machines through to bullet-proof vests and helmets for medical personnel and civilians totalling more than $2.75M dollars.)

A total of 10 drones were purchased by Coldchain Delivery Systems for the initial order. Draganfly is selling the drones at cost, and is donating an additional three drones free of charge. Chell says the drones had to be modified to make them suitable for use in Ukraine.

“We had to change all the comms systems out,” he explains. “It’s a different LTE system, there’s a bunch of interference.”

The first drones will ship mid-April.

 

The Medical Response drone

 

Here’s a look at the medical drone, which uses Coldchain’s proprietary system to keep medical supplies at required temperatures.

 

Draganfly Medical Response Drone

The Medical Response drone has a temperature regulated payload of 35 pounds. It’s intended for shuttling critical supplies, including blood, pharmaceuticals, insulin/medicines, vaccines, water, and wound care kits.

You’ll note in the photo above that the payload is shown on top of the drone. This machine is also capable of carrying the payload beneath, with a quick-release mechanism. Dropping the cargo close to the ground and quickly resuming flight removes potential risk for those receiving the cargo (they won’t be getting close to the drone). It also extends battery life, since the drone won’t have to fully land, shut down, then re-start. Flight time is 25 minutes, with an estimated range of three+ kilometres with a 20-pound payload. Lighter payloads – and it’s anticipated some will be lighter – will have a greater range.

We’re providing drones that are very specific for exactly what they need,” says Chell. “Some others might have an airframe, but they don’t have a temperature-managed payload – so this is very specifically built, this is mission-critical.”

Range on the first shipment will be limited to RF communication over two kilometres. But a second batch, modified for Ukraine, will utilize LTE and have solid communication over a 20-kilometre range.

And the Search and Rescue drones? They’re smaller, faster, and equipped with a thermal sensor – which could prove useful in detecting people trapped in rubble or bombed buildings. Revived Soldiers Ukraine has experienced drone operators; Draganfly will be providing virtual training for these specific drones, and is examining potentially sending trainers to Poland and even Ukraine if more drones are sent in future. (Assuming the first 10 are effective in the field, the potential is here for up to 200 drones being purchased.)

Donations

 

In addition to the these first drones, Chell says several shareholders contacted the company and offered to purchase drones to be donated to the cause. Seven drones have been purchased for this purpose. Chell says the interest has been so great the company now has a page up for people interested in directly purchasing drones for donation. The company says it will provide ongoing mission statistics for those donated humanitarian drones, and possibly even video of some missions.

Draganfly Revived Soldiers Ukraine

As you can see by the price tags and builds, these are not consumer drones. The open-source, North American-made Draganfly products are purpose-built for specific tasks, and feature secure data handling.

Perhaps more important in a war zone, they cannot be tracked with an Aeroscope the way DJI products can. The Aeroscope device is capable of tracking not only DJI drones but also the location of the pilot, which – in a war zone – carries significant risks. (It’s believed that Russia has deployed Aeroscope units.)

“We don’t have system where someone else can track the pilot and track the drone,” says Chell. “These things can’t be tracked.”

(Just FYI, other drone companies have recently announced donations on the Ukraine front. We’ve seen recent announcements from Skydio and Volatus.

 

A personal connection

 

While Draganfly has a corporate tradition of working closely with First Responders, Chell reveals that a personal experience has made this mission resonate even more.

“I was at the base of the towers at 9-11 when the first plane hit,” he says.

“Not that I wasn’t a First Responder fan before that, but that weighs very prominently into my ethos or direction in wanting to give back to that community…and in humanitarian situations.”

InDro’s Take

 

Though we haven’t deployed to a war zone, we have flown disaster response missions. In addition, InDro Robotics has considerable experience with drone delivery. We shuttled COVID test kits from a remote, island-based community on a regular basis during the peak of the pandemic. We’ve also been involved in multiple trials and projects, delivering everything from prescription medications and simulated blood products through to Automated External Defibrillators.

We know, from that work, that even with deliberate planning there can be unexpected obstacles, such as gaps in cellular connectivity, interference, abrupt weather changes, etc. Draganfly has already anticipated some of these challenges, including RF interference, cellular dropouts, and the different LTE system.

Successful deliveries, especially when the cargo is critical, require getting the right product in the right hands at the right time. This is even more urgent and difficult in a hostile environment. Revived Soldiers Ukraine has been on the ground since day one of the conflict, and will have a good handle on both the challenges – and the needs.

We wish Draganfly and Revived Soldiers Ukraine the very best in this endeavour – and look forward to an update in the future.