Police drone collision raises questions

Police drone collision raises questions

By Scott Simmie

 

There’s no question that drones have become an essential tool for First Responders.

They’re used to assess fires, document accidents, search for missing people and even get a sense of damage following a natural disaster like a tornado.

They’re also used by police on occasion to actively search for a suspect trying to evade capture. In such scenarios, you can imagine that officers might be highly focussed on apprehending the suspect.

That may have been a factor in an incident that occurred August 10, 2021. It involved a York Regional Police officer with an Advanced RPAS certificate, a DJI M210…and a Cessna. The incident is outlined in detail in a new Transportation Safety Board report.

(If you’ve read the report and just want to hear our take, skip to the end.)

Police Drone Collision

What happened

 

On August 10, 2021, a student pilot and flight instructor were in a Cessna 172N on a typical training flight. They were on final approach to Runway 15 at Toronto/Buttonville municipal airport. And then, in the words of the TSB report, this happened:

At approximately 1301 Eastern Daylight Time, the student pilot and flight instructor heard and felt a solid impact at the front of the aircraft. Suspecting a bird strike, they continued the approach and made an uneventful landing, exiting the runway and proceeding to park on the ramp. After parking the aircraft, they observed damage on the front left cowl under the propeller; however, there were no signs that a bird had struck the aircraft.

So what did?

Shortly afterward, a member of the York Regional Police reported to airport staff that he believed a collision had occurred between the remotely piloted aircraft he had been operating and another aircraft. The remotely piloted aircraft, a DJI Matrice M210 (registration C-2105569275), had been in a stationary hover at 400 feet above ground level when the 2 aircraft collided. The DJI Matrice M210 was destroyed.

There were no injuries to either pilot on the Cessna 172N or to persons on the ground.

Here’s a look at the runway, along with the location of the RPAS. (Looks like the report missed a “t” on the word “flight.”)

 

 

Police Drone Collision

The drone

 

York Regional Police (YRP) were looking for a potentially armed suspect, and called the YRP’s Air Support Unit (ASU) to assist at 12:02 pm. The pilot of the drone arrived at the scene at 12:20. The first flight of the DJI Matrice M210 took off at 12:32. Shortly after takeoff, the pilot asked some officers standing nearby to watch the drone during flight; one of the officers said they’d do the task.

After some initial reconaissance, the officer landed the flight 16 minutes later to change batteries. It was now 12:48.

“During this time,” says the report, “the pilots in the Cessna had completed their exercises in the practice area and were returning to the airport. They made the appropriate radio calls declaring their intention to fly over the airport and join the right-hand downwind for Runway 15. There was no other traffic broadcasting on the CYKZ mandatory frequency (MF) at the time, nor had the pilots heard any other transmissions on the frequency during their return flight.”

It’s worth noting the “Mandatory Frequency” here. This airport does not have a tower and its own Air Traffic Control. Aircraft are to announce their intentions over a mandatory frequency (124.8 MHz) and monitor that same frequency for situational awareness of other air traffic.

At 12:56, the DJI M210 took off for its second flight. The pilot, who was watching a flat-screen tv displaying the drone feed, took the drone up to 400′ AGL.

The pilots in the Cessna, meanwhile, were scanning for other aircraft as they began their approach toward the runway. They made a radio call with their intentions to land at 12:57. When the drone reached 400′, it was put into a stationary hover.

But that hover, unfortunately, was directly in the flight path of the Cessna. The report notes that a stationary black object, when viewed against urban clutter, would likely not have stood out to the pilots. When the aircraft was approximately 1.2 nautical miles from the airport, traveling at about 65 knots (120 km/hour), it impacted the drone at 13:01.

The Cessna landed without incident. But upon exiting the aircraft, this damage to the cowling was observed. There was also a slight scratch on the propeller.

Police Drone Collision

And the drone?

 Well, it was pretty much destroyed – as shown in this Transportation Safety Board photograph of the pieces that were recovered:

Police Drone

Other factors

 

The DJI drone was equipped with an Automatic Dependent Surveillance-Broadcast (ADS-B) receiver. These pick up signals from ADS-B equipped aircraft in the vicinity, and issue a warning to the drone pilot. The Cessna was not equipped with an ADS-B unit, however, so no warning would have been generated.

The Report says the drone pilot was monitoring the airport’s Mandatory Frequency during operations, using a handheld VHF radio. The drone pilot also had his Restricted Operator Certificate with Aeronautical Qualification (ROC-A), allowing him to operate an aviation radio. Unlike the pilots in the Cessna, drone operators are not required to broadcast their intentions when in controlled airspace. In fact, NAV CANADA does not encourage RPA pilots to broadcast on those radios, as it can contribute to clutter on the airwaves.

But the report does point out an additional key responsibility for Remotely Piloted Aircraft operators:

RPA operators are required to receive authorization from the provider of air traffic services (ATS) to operate in controlled airspace (see section 1.17.2.1). The request for this authorization must include contact information for the pilot, and “the means by which two-way communications with the appropriate air traffic control unit will be maintained.”

When authorization is granted from ATS, a telephone number for the relevant ATC unit is included in the authorization. This telephone number is to be used in case of an emergency or loss of control of the RPA. This exchange of contact information between RPA pilot and ATS is meant to satisfy the Canadian Aviation Regulations (CARS) requirement that two-way communication be maintained.

Flying a drone in controlled airspace requires obtaining clearance through NAV CANADA’s NAV Drone app. If the operation looks very complex and might involve greater than normal risk, the app will bump that request for a more careful review by Air Traffic Services.

But that’s not what happened. According to the Report, the NAV Drone app was not used at all in this incident.

The pilot of the occurrence RPA was aware of the NAV Drone application and knew that the operation on the day of the occurrence would take place entirely within the CYKZ control zone, therefore requiring authorization from ATS.

Due to the nature of the police operation underway, which involved a potentially armed individual, the RPA pilot felt a sense of urgency to get the RPA airborne as soon as possible. As well, the RPA pilot had not observed any traffic in the area during the set up of the RPA and had heard no recent transmissions on the hand-held VHF radio. As a result, the RPA pilot did not request authorization.

Interestingly, investigators later tested the NAV Drone app, requesting to fly an RPA at 400′ AGL at the location where the collision had occurred. The request was denied, and the app suggested they re-submit the request with a maximum altitude of 100′ AGL – a position far less likely to have caused problems for crewed aircraft on approach.

Police Drone Collision

Role of visual observer

 

The TSB Report spends some time on this topic. It also documents what happened on that day in October. It appears that the role of visual observer was not explained to the officer that took on the role. And it also appears that officer spent most of his time looking at the video feed from the drone, rather than maintaining Visual Line of Sight with the drone itself:

During the day of the occurrence, the RPA pilot asked for another officer to be a visual observer. Although a nearby officer acknowledged the request, the RPA pilot did not confirm who, among the officers present, would assume that role, nor did he inform that specific officer what their duties or responsibilities would be. The officer was not aware of the requirement to maintain visual contact with the RPA.

The officer who was acting as the visual observer was observing the TV display for much of the time that the RPA was airborne and did not see or hear any airborne traffic, nor could he recall hearing any radio calls over the RPA pilot’s portable VHF radio.

The report also notes that the drone pilot did not use the York Regional Police’s mandatory RPAS Pilot Checklist, and instead relied on memory to prepare for the flight. It further suggests the pilot may have been ‘task saturated,’ – “restricting his ability to visually monitor the RPA and hear radio calls on the control zone’s MF and the sound of incoming aircraft, both of which preceded the collision.”

 

Some findings…

 

It is not the Transportation Safety Board’s role to find fault or blame. But it does identify contributing factors and/or causes that likely all played a role in the collision. Here are the four key findings on that count:

Police Drone Collision

“Findings as to risk”

 

The report also notes two findings under the above category. It emphasizes that what appears below does not appear to have contributed to the collision, but could lead to adverse outcomes in the future:

Police Drone Collision

Kate Klassen weighs in…

 

InDro’s Kate Klassen is a drone and airplane pilot and has about 1000 hours instructing on the same type of plane involved in the collision. She’s also very familiar with the minutiae of RPAS regulations in Canada.

Klassen read this report with great interest and noted a few useful takeaways. In particular, how it appears the apparent focus on the task – catching a criminal suspect – may have obscured what should have been standard procedures.

“Typically First Responders have established with the Air Traffic Service providers that they can do the job and inform as soon as possible, rather than following the NAV Drone pre-authorization process the rest of us follow.” she says.

“So I think it’s less that they launched as they did, and more that they didn’t have the situational awareness to operate there safely. They were perhaps too invested in getting the job done, where they figured ‘It’s not going to happen to me’, and weren’t taking advantage of all the tools at their disposal. They probably didn’t realize how risky this location was, especially to be operating at that altitude.”

 

Briefing visual observer

 

Klassen also notes that the selection of a visual observer was not accompanied by any sort of thorough briefing – which would have included maintaining Visual Line of Sight with the RPA, monitoring the radio, and listening (along with watching) for any crewed aircraft.

“I think the situational awareness piece is important,” she says. “Have the radio on the right frequency, have the visual observer actively monitoring it. It can’t be just ticking the box that you’ve assigned someone the task.”

“A more effective trained role would be explaining or ensuring they have skill to listen in on the radio and build that situational awareness of where the aircraft are. Also monitoring the sky, listening for aircraft noise. If you can hear a crewed aircraft but not see it, that’s when it’s sketchy.”

Klassen has worked with many First Responders across Canada, and understands the pressure they can be under to get a drone in the air. The challenge is to follow Standard Operating Procedures despite that pressure – particularly in controlled airspace this close to an airport.

 

InDro’s take

 

Though no one was injured during this collision, it was a serious incident. The drone could just as easily have hit the windshield, the leading edge of the wings near the fuel tanks or damaged the landing gear. Thankfully, that didn’t happen.

The Transportation Safety Board report is both methodical and meticulous. While not pointing the finger of blame, it does highlight some procedures that most certainly could have been handled better – and likely would have, were the flight not so high-priority.

Accidents and investigations should be, in our view, viewed as learning opportunities. And in this case – whether you’re a First Responder or not – there are clearly lessons to be learned.

Let InDro Robotics pilot your next inspection mission – remotely

Let InDro Robotics pilot your next inspection mission – remotely

Picture this: You run a solar farm. And it’s time for a routine inspection to detect faulty or damaged solar cells.

Traditionally, you’ve inspected using a handheld thermal sensor – hoping to identify any anomalies on your solar panels. It does the job, but it’s time-consuming. You’re aware that drones are capable of carrying out this task much more rapidly, but that’s not a simple solution either. The time and expense of training an in-house pilot to meet the regulatory bar, along with the cost of a drone with a thermal sensor, add up.

What options do you have? Well, you could hire someone from outside on a contract basis. That gets pricey as well, since the fee generally includes travel time and other expenses for the operator. Like most solar farms, your facility is located in a rural area far from the nearest major city.

InDro Robotics is pleased to offer a solution: We ship you a fully-charged drone with thermal sensor, and we fly the mission remotely.

And how does that work? Well, just like this:

Inspections without the hassle

 

Let’s back up a bit.

InDro created this solution in response to a need. Solar and other industries told us they understood the value proposition of drone inspections but couldn’t justify the cost of purchasing a drone with the appropriate sensor for their needs. Many also said they didn’t need a drone pilot on staff.

And so we started thinking of options that would work within the current regulatory framework. In Canada, as long as the pilot is in contact with a visual observer monitoring the flight, these missions can be carried out without additional permissions beyond notifying NAVCAN of the flight.

“It’s a straightforward solution for solar farms or other clients requiring any form of aerial inspection,” explains Peter King, InDro’s Head of Robotic Solutions. “A qualified pilot instructs the client how to turn on the drone and monitor airspace. A pilot from InDro Robotics takes care of the rest, capturing and delivering meaningful data to the client – and at a significantly lower price point than having a contractor travel to the client’s location.”

And when the drone lands? The client simply powers it off, puts it back in the box, and ships it to the nearest InDro Robotics location (there are five in Canada).

 

Wait – there’s more!

Remotely Operated Drones

Secure, remotely operated flights

 

If you follow our news, you’ll be aware we have created our own, proprietary platform for low-latency operations with high data bandwidth. We call the system InDro Pilot, and you can take a deeper dive here.

This system, which includes a special hardware module we’ve developed, is capable of exceedingly low-latency over 5G connections. It can also be operated over 4G as well. So regardless of where you need an inspection, we can carry it out as long as there’s a cellular connection. If that connection is 5G, we have the capability to upload your data in real-time to the cloud for processing – meaning you’ll receive meaningful and actionable data as soon as possible following the flight.

What’s more, the InDro Pilot system also informs traditional aircraft in the vicinity that a drone operation is underway at your location. This “Hear and be Heard” function, using a Software Defined Radio, reduces the likelihood of any conflict with low-flying aircraft.

If you check out the photo below, the black module on our WayFinder contains an Edge processor, high-speed modem, the Software Defined Radio – and much more. This is an integral ingredient in the secret sauce of InDro Pilot.

Canada Drones

InDro’s Take

 

Not surprisingly, we’re keen on this solution.

But that’s not just because we created it. We truly believe this fills a niche in the marketplace, offering value to those who require top quality data collection and analysis but infrequent flights. For companies requiring up to four annual inspections, missions carried out remotely by InDro Robotics specialists are a cost-effective solution. We simply ship you the drone, ready to fly out of the box. All you have to do is watch the sky and keep in touch with our pilot during the flight – and the data will be your way in no time. And, by the way, InDro Robotics was the first company in North America to carry out a remote inspection in this way.

We are currently offering this solution in Canada. US operations are slightly more complex due to the FAA’s differing regulations, but not impossible.

To learn more of receive a quote for remote data acquisition, contact us here.

Human lungs transported by drone in Toronto: A global first

Human lungs transported by drone in Toronto: A global first

By Scott Simmie, InDro Robotics

 

In a world first, a set of human lungs has been transported between two hospitals by drone.

It happened in Toronto September 25, with the drone carrying the organs on a six-minute flight between Toronto Western Hospital and Toronto General Hospital. Other organs have been transplanted by drone previously in the US, but it’s believed this is the first drone transport of lungs in the world.

The mission was carried out by Unither Bioélectronique, a Quebec-based subsidiary of United Therapeutics Corporation. The parent company is focussed on cutting-edge medical research, including the 3D printing of human-compatible biological tissue. Unither Bioélectronique, meanwhile, is building a network to be able to deliver organs. Both share a commitment to help save the lives of those awaiting transplant; the following comes from the Unither Bioélectronique website:

“Thousands of patients die very year waiting for an organ transplant due to the severe shortage of donors, and the time-sensitive supply of compatible and useable organs. Supply is simply not meeting the critical level of demand…

“United Therapeutics has a vision to change the fate and lives of these patients. Through innovative techniques in lung manufacturing, including pig-to-human xenotransplantation and advanced 3D bio-printing, and enabled by an integrated delivery network, Unither Bioelectronics has set itself on a course to be both a game-changer and lifesaver for those in need.”

A lot of preparations…

 

This was not a simple flight; a lot of planning and testing went into getting ready for the big day. In fact, according to a Canadian Press story carried by Global News, preparations took 18 months from beginning to end. Tasks included designing a custom container that would be relatively impervious to changes in barometric pressure (which varies with altitude and weather) and also provide protection from vibrations and minor bumps. This was all before getting regulatory clearance to fly at short notice over a congested urban centre.

Eventually all was done. And when a suitable pair of donor lungs became available, both Unither Bioélectronique and the University Health Network were ready. On October 12, the company released a video outlining the process:

The drone doctor

The University Health Network’s surgeon-in-chief, Dr. Shaf Keshavjee, was deeply involved with the project. In fact, it was Dr. Kehavjee’s patient who would be the recipient of this precious cargo, according to the Canadian Press story. Dr. Keshavjee was waiting on the roof when as the flight took place.

“To see it come over the tall buildings was a very exciting moment,” he told CP reporter Tara Deschamps. “I certainly did breathe a sigh of relief, when it landed and I was able to…see that everything was OK.”

The surgery took place soon after the organs arrived, and the recipient was recovering nicely as of mid-October. He is also, according to the story, a drone enthusiast.

The bigger picture

Using drones to deliver organs is a high-profile mission, and we’re happy to see this has taken place. But the reality – as Unither Bioélectronique points out – is that there’s a tremendous shortage of donor organs. Often, too, organs must be flown far greater distances for those awaiting transplant – routinely between cities and not just across town. Such missions would not be suitable for a general multi-rotor drone, though there are certainly uncrewed fixed-wing aircraft that could be adapted for the job.

This is not in any way to diminish the accomplishment here. But the reality is that drone deliveries of other essential medical supplies, particularly to destinations outside of urban centres, will benefit the greatest number of people. One need look no further than Zipline, which has completed hundreds of thousands of flights carrying critical (and often life-saving) medical supplies in Rwanda, Ghana and elsewhere.

Medical drone deliveries

InDro Robotics has long believed in the use of drones for positive use-cases. That’s why the company has been involved in numerous trials – as well as real-world deliveries – over a period of many years. We have delivered simulated blood products between hospitals in Montreal via drone, using insulated pouches equipped with temperature sensors that would send an alert if the temperature of the sample changed. (Certain blood products become less viable if they are not maintained within precise temperature parameters.)

InDro has also partnered with Canada Post, London Drugs and Country Grocer on trials to securely deliver prescription medications directly from the pharmacy to the end-user. The medications were contained in tamper-proof vials that require a specific code to unlock. Getting critical medications to people quickly – even products like Narcan, which saves lives during opioid overdoses – can save lives. Here’s a look at the joint project InDro carried out back in 2019:

 

And there’s more…

During the peak of the COVID-19 pandemic, InDro Robotics regularly shuttled COVID test kits and swab samples between an island-based First Nations community and a mainland clinic. This saved the local healthcare providers from manually transporting these by car and ferry – a multi-hour undertaking – meaning they could spend more time helping patients. InDro has also carried out tests in conjunction with the County of Renfrew Paramedic Service, delivering Automated External Defibrillators to the site of 9-1-1 calls involving simulated cardiac events. The drone was able to repeatedly get the life-saving equipment to the site faster than paramedic teams driving emergency vehicles. In these kinds of urgent healthcare crises, minutes – and even seconds – count.

With multiple trials and real-world deliveries under its belt (along with standing approval for Beyond Visual Line of Sight flights and a Cargo delivery license from the Canadian Transportation Agency), InDro Robotics looks forward to regular deliveries of critical medical supplies in the future.

If you’re interested in exploring options for InDro solution for your community or healthcare network, we’d love to her from you. Contact us here.