InDro hires Head of Strategic Innovations

InDro hires Head of Strategic Innovations

By Scott Simmie

 

As a Research and Development company, InDro Robotics is – by necessity – engineering-heavy. Our staff at Area X.O in Ottawa and in British Columbia are constantly pushing the envelope when it comes to inventing and deploying new solutions in hardware, software and service provision.

As a result, much of the focus of our hiring in the past couple of years has been expanding our engineering staff.

But with a growing number of InDro products and clients, it’s also important to identify and develop key partnerships. And on that front, we’re pleased to announce a non-engineer hire. Stacey Connors joins the InDro team as Head of Strategic Innovations.

The role is about the big picture – and a long-term vision of planning and executing InDro’s growth trajectory.

“My role is to find where we want to go, find the vertical that InDro should lean into, then determine what infrastructure we need based on our initial customer understanding and discoveries.”

It’s a big job. And Stacey comes with the requisite experience.

Stacey Connors

FedEx

Connors comes to InDro after a 12-year, high-level run at FedEx, the global leader in express transportation. Beginning as an account executive, she went on to positions in Strategic Development, became a Worldwide Account Manager, and was a District Manager when she made the leap to InDro.

Much of her work with FedEx involved B2B development. She worked with a variety of different verticals, including aerospace, retail, healthcare and manufacturing. She comes with a special knack for putting pieces together.

“What I enjoyed about it was twofold,” she says: “Finding the intersection between the solution that my organization had available and the need or problem that the customer’s trying to solve.”

Leap of faith

 

Connors says she truly enjoyed her work at FedEx. But when the opportunity at InDro came along, she felt ready for a new challenge that would push her beyond her comfort zone.

“I was craving something wildly different,” she says. “I hadn’t remotely thought about robotics and laughed when Peter (Peter King, Head of Robotic Solutions) first mentioned it. But it was a personal opportunity to get uncomfortable, be challenged, and work on the edge – where you have to be sharp.” 

Connors has quickly jumped in, traveling to Area X.O on her first week to meet a visiting robotics company from Europe and a delegation from NAV CANADA. While there, she quickly observed one of InDro’s key strengths.

“In my first few days it was very obvious that there’s a cohesiveness among all individuals in the organization. Everyone fully understands the business objectives we’re trying to achieve and the value that each of them bring,” she says. “When I walk into an organization and see that collective spirit, that’s the horse I’m going to bet on.”

 

Solutions

 

 

Drawing on her FedEx experience, Connors says she’s excited to start identifying companies that might benefit from InDro’s many robotic solutions – including a new inventory drone system that autonomously scans warehouse stock. But while sales may well result from her work, her role is really about the bigger strategic picture as InDro continues to grow.

“Yes, I’ll be leveraging our R&D capabilities to accelerate specific industries in their use of these technologies,” she says. “But I really see InDro as an integrator – and that’s almost how I would describe my role. We have research and development, the newest and latest and greatest. I’ll be going out and seeing who has other pieces we don’t have and bringing them all together. And that really gets me excited.”

Canada Robotics

Other expertise

 

Connors, in addition to her accomplishments at FedEx, has other expertise that will serve her well in this role. She has a Bachelor of Health Science from Wilfrid Laurier University,  along with a post-graduate degree from the University of the Sunshine Coast in Australia. She’s also a certified Talent Management Practitioner, has gone through the Ivey Sales Leadership Program, has studied Emotional Intelligence at McMaster’s DeGroote School of Business, and is also a Certified Multipliers Leader – with the latter meaning she has expertise to help bring out the greatness in others.

But she’d rather talk about InDro – and what she’s learned since coming onboard – than about herself.

“At FedEx our operators were the core and value of the company. And it is obvious that the engineers are the core value of this company,” she says. “Research and development is that incessant hunger to continue to provide new options, new solutions, new technologies. And you can feel that spirit here.”

Autonomous Cars

InDro’s take

 

The hiring of Stacey Connors as Head of Strategic Innovations is significant for a couple of reasons. The first, obviously, is that she brings proven skills, expertise, and an outstanding reputation.

But the second is really about the timing.

InDro Robotics has been growing steadily. In the last two years our team has developed and deployed multiple new products and services, and we are working with several global technology companies. Our engineering team has continued to grow.

“We are at a significant juncture in the company’s trajectory,” says CEO Philip Reece. “While InDro will always be an engineering-first firm, we are now at the stage of securing strategic partnerships to ensure the next phase of growth. Stacey is the right person, in the right position, at the right time.”

InDro Backpack makes smart dog robots smarter

InDro Backpack makes smart dog robots smarter

By Scott Simmie

 

Want to make a smart dog smarter?

(And by “dog,” we’re referring here to quadruped robots – whose form factor and locomotion make them look like dogs.)

InDro has developed a solution for that.

We call it InDro Backpack. It’s a bolt-on hardware/software product that transforms the capabilities of these robots, enabling them to carry out remote operations over 5G and 4G networks – with data streaming real-time to the desktop or laptop of the operator.

And why do we call it the InDro Backpack? Well, once it’s bolted on, that’s what it kind of looks like. This is our first generation prototype, mounted on the Unitree GO-1 EDU. (We’ll explain those scuff marks later on.)

 

InDro Backpack

What’s in the box

 

The box contains both hardware and software. On the hardware side, there’s a high-speed 5G modem, along with a Jetson Xavier NX (which manufacturer NVIDIA calls the “World’s smallest AI supercomputer”). The Robot Operating System (ROS) library is also stacked in there, along with the software required to use the ROCOS dashboard for controlling the system.

And what does that mean?

“The operator is able to send the control commands to the InDro backpack over a 5G or 4G network. And the InDro Backpack passes the commands and transmits that to the dog,” explains Kaiwen Xu of our Area X.O R&D engineering facility.

InDro Backpack also makes the most of the multiple sensors that come on quadrupeds like the GO1 EDU.

“Out of the box, the Unitree GO1 has an app. But it’s not the greatest at managing all of the camera feeds,” says Account Executive Luke Corbeth. “Through the ROCOS dashboard, it’s a lot easier to see each of the feeds and get the most out of the impressive hardware that’s in the units. There are five sets of cameras and three sets of ultrasonic sensors – so we can really ensure the client is getting the most out of those.”

In addition to that, the software libraries make the Unitree a fully ROS-enabled robot, which greatly expands its capabilities.

“That’s what makes Backpack valuable to the R&D community,” says Corbeth. “It means clients have access to all available packages to enable a wide range of applications, be it autonomous navigation, perception, motion planning, multi-robot systems – packages to ensure they can really jump-start their project. That’s the InDro value add-in.”

InDro has also made the User Interface super-intuitive, allowing an Xbox controller to control the robot via a laptop or desktop device. Even first-time users seem to have no difficulty telling these Backpack-enhanced dogs where to go, seeing their surroundings in real-time via video.

 

Who’s this for?

 

Who might benefit from an InDro Backpack-enabled quadruped?

Well, it depends on the use-case. For education, R&D and corporate innovation centres, the GO1 EDU with Backpack is a good choice. But Enterprise clients wanting to do outdoor inspections in more challenging environments will likely want a larger and more capable robot, the Unitree B1.

“The backpack was designed for the GO1 as a means of getting additional compute and teleoperations,” says Corbeth. “It can be used in simple and controlled environments, but as soon as it becomes more dangerous and complex it makes more sense to put the backpack on the B1.”

The B1 is capable of climbing larger stairs and negotiating more hazardous environments than the GO1 EDU. It also has an impressive Ingress Protection rating, making it better suited to these use-cases. That’s a photo of the B1 beside its smaller sibling below, taken at our Area X.O facility:

 

Quadrupeds

Roll over

 

If you were looking carefully at the first image of the GO1 EDU with that backpack, you’ll have noticed a few scratches on top. How did they get there?

Well, the Unitree quadrupeds are capable of righting themselves if they happen to fall over on some challenging terrain. They do so with a manoeuvre that’s like a dog rolling over. This gets up enough intertia for them to land on their feet. We took that into account when designing the Backpack.

“The backpack has a slim profile. We built it so that it can still roll over – even if it falls,” says Corbeth. “So it doesn’t compromise any of the functionality of the robot.”

(Observant readers will also notice a Unitree robotic arm in the top right of the image below. More on that in a future post.)

Quadrupeds

Making a good robot great

 

Out of the box, the Unitree robots are highly capable. But InDro Backpack clearly expands those capabilities. With this add-on, the units can be operated from hundreds or even thousands of kilometres away using an Xbox controller with no discernible latency. Multiple windows in the ROCOS dashboard allow for monitoring data from the Unitree’s various cameras and sensors. The addition of the ROS software library and Jetson EDGE computer further enhance capabilities for autonomous functions.

In short, this good dog suddenly becomes a great dog – with additional capabilities.

“A client can add LiDAR to the dog, they can also put a stereo camera on top for 3D Simulatenous Localisation and Mapping (SLAM), and these kinds of things,” says Kaiwen Xu.

Two InDro Backpack-enabled Unitrees are soon heading out the door to California, with more in production. It’s a unique solution, designed from the bottom-up by InDro.

“This product has really solidified us as kind of the go-to integrators for some of the platforms out of Unitree,” adds Corbeth. “It’s worth noting that the backpack is platform-agnostic. It can go onto any platform, including the AgileX platform.”

So just picture that Backpack on the highly capable Unitree B1, seen below. A perfect fit for remote inspections and surveillance.

InDro’s take

 

A big part of What InDro Does is develop products that can expand the capabilities and use-case scenarios of existing products. Innovations like InDro Commander and InDro Pilot are already making their mark in the industry, and InDro Backpack is next.

“Upgrading a quadruped with InDro Backpack is a significant value-add that can truly teach a new dog new tricks,” says InDro CEO Philip Reece.

“With growing demand for teleoperated solutions – particularly for remote locations like electrical substations and solar farms – InDro Backpack transforms Unitree quadrupeds, and other robots, into more powerful and expandible platforms. I’m very pleased with the work our Area X.O team has put into the development and production of this tool.”

Interested in learning more? Feel free to contact Luke Corbeth to schedule a presentation or demo. And if you have an Xbox controller, he might even let you drive!

Putting Sentinel through its paces at EPRI

Putting Sentinel through its paces at EPRI

By Scott Simmie

 

There’s testing. And then there’s “real-world” testing.

For example, InDro Robotics builds and tests drones and ground robots. We do this constantly, pushing for continuous improvements (and even breakthroughs) with our products. In BC, we’re frequently flying missions to test cellular connectivity or our new proprietary drone software, InDro Pilot.

At Area X.O in Ottawa, we routinely deploy our ground robots on missions to test tele-operations, new sensors, and even autonomous functions. (We have a real advantage here, because Area X.O is made for robots. There are several roads – and even traffic lights – designated for testing and use by autonomous vehicles.)

And while such research always provides us with useful data, it’s just not the same as putting technology to the test in a real-world environment.

That’s why we took Sentinel – our custom-built robot for monitoring and inspection at remote facilities – to Massachusetts.

 

Autonomous Robots

The EPRI challenge

 

EPRI stands for the Electric Power Research Institute. It’s a non-profit energy research, development and deployment organisation. EPRI is constantly doing research – collaborating with more than 450 private companies across 45 countries globally. The purpose, according to its website, is to “ensure the public has clean, safe, reliable, affordable, and equitable access to electricity across the globe.” EPRI shares its research with members, which represent virtually all facets of the power generation and delivery sector.

EPRI has multiple research facilities, including one in Lenox, Massachusetts. This particular location features an electrical substation that can be energised, de-energised – and can even simulate rain for testing purposes.

Earlier this year, InDro Robotics was one of a small number of companies to participate in research to analyse the effectiveness of remotely-operated and autonomous ground robots in a variety of conditions. The purpose was to determine the ability of such devices to carry out inspection and monitoring – including whether these robots could detect problems such as arcing.

InDro Robotics Sentinel

The InDro Team

 

We dispatched InDro Account Executive Luke Corbeth and Robotics Engineer Austin Greisman (along with Sentinel, of course) to the EPRI facility in Lenox, Massachusetts.

“EPRI’s goal for this program was to evaluate technologies that are capable of 24/7 autonomous substation inspection and security monitoring,” explains Corbeth. “This put Sentinel in a real substation environment, to conduct inspections and security patrols amidst powerful electrical currents.”

In fact, there was a series of specific tests during the week-long demonstration. These included all permutations of the following:

  • With the substation energised and de-energised
  • With simulated rain and without rain
  • During daylight and at night

That makes for eight separate missions carried out in different conditions – including an energised substation with simulated rain during nighttime, and a de-energised substation on a clear day.

In addition, each of the above eight missions was carried out both via remote teleoperations – and also autonomously. Factor that in, and there were 16 separate challenges.

And that’s not all. EPRI engineers carried out their own tests on Sentinel, seeing how well it handled inclines, manoeuvres through mud, what weight it could carry at what speeds, and battery life. On these tests, Sentinel performed very well.

“Once we were on site, the value that Sentinel brings to utilities became very apparent – especially identifying thermal signatures to identify (overheating) components onsite or intruders trying to break in,” says Corbeth.

“The performance at night and during simulated rain tests was very successful. They actually have hoses that go overhead and can blast the site with water.”

FYI, the image below is a screenshot from the secure, browser-based controller for Sentinel. The operator can see all key parameters, control propulsion and camera systems, in real-time.

EPRI

Lessons learned

 

At the outset, we told you this was very much a real-world test for Sentinel. If this article were simply a piece of marketing, we’d tell you that everything went perfectly. But it didn’t, and there were lessons learned.

For one thing, we discovered that Sentinel’s track-based locomotion – though ideal in numerous demanding terrains – fell somewhat short in the heavy gravel bed of this substation. Pieces of gravel got caught in the tracks from time to time. As a result, we’re now building a rugged wheel-based variant of Sentinel specifically for this kind of surface (though the tracked version will still be available).

We also faced some challenges with autonomous missions. For one thing, at the time of testing Sentinel did not yet have an optical-based docking system for wireless re-charging (it does now). We also originally thought that a GPS-based guidance system would work in this environment. And while it did, we soon realized that SLAM (Simultaneous Localisation And Mapping) would be a better option. That feature will be integrated into Sentinels going forward.

“The opportunity to get onsite enabled us to test our autonomy package and understand what it’s good at, as well as what needs to be improved,” says Corbeth. “We believe we’re well on our way to a complete, 24/7 autonomous solution. I’d say we’re 85 per cent of the way there. This is new technology” 

InDro Engineer Austin Greisman on-site in Lenox with Sentinel

InDro Robotics Sentinel

InDro’s Take

 

Research and development, as we often say, is at the very core of InDro Robotics.  And a big part of R&D is testing outside of the confines of the lab.

And while we were very pleased with many aspects of Sentinel’s performance in the field, we also identified areas where there was room for improvement. Sentinel is now capable of fully autonomous docking to its wireless charging station, and we’re well along the path with fine-tuning SLAM on this device.

Full autonomy, as many of you know, is a difficult challenge. Whether it’s ground robots or drones, InDro has always taken a “Crawl, Walk, Run” approach. Sentinel is now hitting its stride with walking – and getting ready to run.

InDro’s “Drone-in-a-box” captures precision agriculture data without the hassle

InDro’s “Drone-in-a-box” captures precision agriculture data without the hassle

Recently, we told you about a really intriguing InDro Robotics solution.

It’s one that appeals to people who need drone data – but don’t have a drone or a certified pilot. It also appeals to people who like to keep an eye on their money, and can’t quite justify the expense of hiring a contractor to come on-site.

In a nutshell, it works like this: InDro ships you a fully-charged drone with the appropriate sensor for the job. We arrange for a mission time when you’re available and the weather is cooperating.

And then what? You simply pull the drone from the box, follow our instructions over the phone, and we’ll do the flying.

In our recent post, we talked about how this is ideal for solar farms – and it is. But that’s not the only sector where we can help. Our “Drone-in-a-Box” program is also ideal for precision agriculture, an area where it’s helpful to have a professional fly the mission and crunch the data.

And that…looks like this:

Expertise

 

You might have noticed that video is from 2017. Which means InDro Robotics is now in its fifth year of offering remotely piloted services.

But some things have changed since that video was produced. We are now capable of remotely piloting using 5G network connections. That translates into near-zero latency for our remote pilots – and more. We now have the ability to stream even extremely dense data directly to the cloud. This means clients with 5G service in their areas have only a minimal wait time before receiving actionable data.

In the early days of this service, InDro would process the data once the drone was returned. With direct-to-cloud uploads, processing can begin literally while the mission is being carried out.

What’s more, literally any kind of aerial inspection can be done in Canada using our system. If you haven’t seen it, please take a moment and check out this more recent video: InDro inspected a large solar farm from more than 500 kilometres away:

 

InDro’s Take

 

Precision agriculture requires high-end hardware, software – and expertise. It’s not something the average farmer can simply jump into.

Yet a single flight can provide a wealth of data surrounding moisture, crop health, nutrient levels and more. That data allows farmers to save costs through the precise applications of fertiliser, water, herbicides and insecticides only where they are needed.

Clients have told us they previously shied away from precision agriculture using drones due to cost and complexity. Our “Drone-in-a-Box” is a cost-effective solution that produces results.

If you’re interested in precision agriculture, solar inspections – or any other area where a remotely piloted drone flight can capture meaningful data, get in touch. We’ll ship you a drone, we’ll fly the mission – and you’ll receive the data you need.

Meet InDro Pilot: A powerful 5G hardware and software suite for Enterprise drones

Meet InDro Pilot: A powerful 5G hardware and software suite for Enterprise drones

By Scott Simmie

 

Nothing turns our crank quite like developing something brand new; something that’s never been done before. That’s really the heart and soul of R&D.

And that’s also why we’re so excited about InDro Pilot – a new hardware/software solution created by InDro Robotics that will give Enterprise drones and their operators the equivalent of superpowers.

Okay, perhaps there’s some slight hyperbole in that statement. But there’s no question that InDro Pilot will dramatically expand the capabilities of drones using the Pixhawk flight controller, the standard in many Open-Source drones.

InDro Pilot enables operations over 4G and 5G, meaning you could pilot a drone from across the country (providing you have a visual observer with eyes on the flight or a Beyond Visual Line of Sight Special Flight Operations Certificate). It also enables the secure transmission of even highly dense data (such as 4K streaming video) directly to the ground or the cloud with minimal latency. No more pulling out MicroSD cards and waiting for uploads. Realtime data, while you’re flying the mission, sent where it’s required.

Needless to say, this didn’t happen overnight. Getting here required an immense amount of effort from our Area X.O R&D facility. And, in particular, the project’s lead engineer Ahmad Tamimi – seen here on the right. When this photo was taken in the fall of 2021, Ahmad was in the thick of developing the 4K streaming component of the system and integrating it on our Wayfinder drone (foreground).

 

Canada Robotics

There’s a backstory here…

 

The catalyst for InDro Pilot was a technology challenge. The Ontario Centre for Innovation, in conjunction with Ericsson and the ENCQOR 5G testbed, put out a call to Canadian technology companies to enable drone flights over 5G. What’s more, the challenge required the successful transmission of uncompressed 4K video – which will help enable Beyond Visual Line of Sight flights because it provides the pilot with greater situational awareness. There were other bits and pieces, which we’ll explore at a later date. Point is, being the successful applicant in this technology challenge is what started us down the InDro Pilot road.

As we explain what InDro Pilot is all about, we’re going to get into a few names of various components. But big picture? It’s a combination of hardware and software that collectively brings about both enhanced capabilities for the drone itself (ie 4G, 5G, dense data realtime uploads etc.) as well as enhanced options for the drone operator to further customize drone sensors and peripherals for any given missions via dashboard. 

Ahmad Tamimi pulled together this nifty graphic, which provides a high-level view of the system:

Drones Canada

The basics

 

In this post, we’re going to focus on InDro Captain and InDro Capsule.

Let’s start with the latter.

InDro Capsule is hardware, integrated into a capsule. Think of it as a box that can be easily attached to any Enterprise drone using a Pixhawk flight controller, because that’s what it is. That hardware includes:

  • A high-speed Quectel modem for transmitting even dense data to the ground and the cloud in real-time
  • A Jetson-based Edge processor
  • Specialized antennae for both data transmission and Command and Control
  • More IP-protected secret sauce we’ll unveil soon, which has significant implications for Detect and Avoid scenarios

InDro Captain, meanwhile, is the onboard software. It enables communication with the InDro Base (our ground station), secure data transmission to the ground or cloud, and can easily integrate peripherals like a winch or additional sensors.

And what does it look like? Well, the magic is contained within that hexagonal dome – and we’re currently making that dome smaller and lighter. Check out those wild antennae, chosen after a detailed calculations and simulations. And that white one with the InDro logo? We can’t wait to tell you what that one does.

Canada Drones

Another look

 

These pix were taken during the R&D phase of InDro Pilot, so they’re just quick phone grabs. But we have a feeling you’ll probably like to see at least one more:

Canada Drones

By the way, that’s a high-end mirrorless camera on that gimbal. With InDro Pilot on board, transmitting its uncompressed 4K output at minimal latency is a breeze.

When flying over 5G, the feed from this sensor (or any other) can be captured on the ground and simultaneously uploaded to the cloud. Our new InDro Link software (more on that later), securely integrates with third-party cloud services such as AWS, Azure, Google and more.

As 5G networks expand across North America and globally, this has significant implications for not only remote teleoperations and missions on private 5G networks, but also for realtime capturing of dense data. Providing there’s a 5G network at each end of the mission, a drone equipped with InDro Pilot can be controlled from across the country – with the pilot (and others) watching the data acquisition and all other aspects of any given mission in real-time.

 

Interface

 

InDro Pilot is an entire ecosystem for 4G and 5G drone operations, including complex missions involving LiDAR, thermal sensors – even winches. The user interface reflects that, with “modules” (ie winch, etc.) that can be added to customize for each mission. Here’s a look at just one of many modules, offering granular control and at-a-glance monitoring.

Canada Drones

“The InDro Pilot system is going to truly expand the capabilities of many Enterprise drones,” says InDro Robotics CEO Philip Reece. “Just as our InDro Commander module has made ground robots more powerful and customizable, InDro Pilot will do the same for UAVs.”

InDro Robotics has already delivered Wayfinder drones equipped with the InDro Pilot system to clients from the regulatory world. Commercial sales will commence shortly.

Interested in learning more? Feel free to contact Peter King.

InDro’s Take

 

As we said at the outset, nothing gets us revved up quite like creating new solutions. InDro Pilot has a myriad of powerful capabilities not outlined in this story – including some features that will definitely contribute to the safety of Beyond Visual Line of Sight flights though a proprietary system that will alert nearby private aircraft to the drone’s proximity during missions. So we’re excited about this product, much in the same way we were excited when we released InDro Commander for ground robots.

And while all Indro Robotics developments are team efforts, there’s often an individual who really takes the lead and owns the project. In this case, Ahmad Tamimi truly took charge, often working on it alone during those dark and early days of the global pandemic. InDro Pilot is a huge accomplishment, and we applaud Ahmad and the rest of the InDro team.

CONTACT

INDRO ROBOTICS
305, 31 Bastion Square,
Victoria, BC, V8W 1J1

P: 1-844-GOINDRO
(1-844-464-6376)

E: Info@InDroRobotics.com

copyright 2022 © InDro Robotics all rights reserved

YOW drone detection program featured in WINGS magazine

YOW drone detection program featured in WINGS magazine

The Drone Detection Pilot Project being carried out at the Ottawa International Airport has received some traction in WINGS Magazine, Canada’s leading online and print publication about the aviation world.

InDro Robotics is one of the partners in the project at YOW, supplying hardware and software used to detect drones that might pose a threat to passenger, private and cargo aircraft using the airport. The program has gathered a lot of valuable data since it began in the fall of 2019.

But what it gathered during the anti-vaccine mandate protests in Ottawa in February of 2022 really raised some eyebrows. Drones were detected flying in a restricted flight zone over Parliament Hill and elsewhere in the downtown Ottawa core, with a spike during police operations to clear the protests.

A total of 27 different drones carried out 59 flights over a period of four days. Of those, 25 flights exceeded 400’ above ground level (Transport Canada’s limit, except in special circumstances). Eleven flights took place during hours of darkness – though that’s not a violation of regulations providing the drone is using lights that allow the pilot to maintain Visual Line of Sight and orientation.

Nonetheless, these flights all took place in restricted airspace. A small number were carried out by law enforcement, but the vast majority were not. As you’ll see in the following graphic, 15 unique drone IDs were detected, and 25 of the 59 flights were carried out above 400 feet (including one at 1583′ AGL).

Drone Detection

Wake-up call

 

Our initial story about this caused quite a stir, including this article in the Ottawa Citizen – along with attention from Canadian airports that do not currently have drone detection programs. And now, WINGS Magazine has picked it up.

The article appears in the May/June Digital Edition, which is also a print edition.

Drone detection

Drone detection, made simple

 

The system in place at YOW includes a micro-Doppler radar, capable of detecting the movement of small drone propellors at close range. It also features a sophisticated antennae array, which has been picking up flights as far as 40-50 kilometres from the airport.

The system is automated – and the data is banked. If a drone poses an immediate threat to a flight path, an alert is sounded and airport authorities can quickly respond.

You can read the story that appears in WINGS Magazine here. We’d also like to thank editor Jon Robinson for picking this up.

InDro’s take

 

We’ve pleased to be an integral part of the YOW Drone Detection Pilot Project. The results have been greater than we all anticipated, with highly granular data that has helped YOW educate drone pilots and also prepare an airport protocol for those rare but critical occasions when RPAS flights have the potential to impinge on the safety of crewed aircraft. The system provides enough advance warning that aircraft pilots can be given a heads-up and instructions to minimise any conflict with drones; the system is also capable of identifying the location of the RPAS pilot.

Monthly data is shared with program partners and has generated interest from other Canadian airports. The data detected during the Ottawa protests has also attracted the interest of those responsible for the safety of Parliament Hill and other critical buildings in the downtown Ottawa core.

For more information on how a drone detection system might benefit your airport or critical infrastructure, please don’t hesitate to contact us here.