InDro Backpack makes smart dog robots smarter

InDro Backpack makes smart dog robots smarter

By Scott Simmie


Want to make a smart dog smarter?

(And by “dog,” we’re referring here to quadruped robots – whose form factor and locomotion make them look like dogs.)

InDro has developed a solution for that.

We call it InDro Backpack. It’s a bolt-on hardware/software product that transforms the capabilities of these robots, enabling them to carry out remote operations over 5G and 4G networks – with data streaming real-time to the desktop or laptop of the operator.

And why do we call it the InDro Backpack? Well, once it’s bolted on, that’s what it kind of looks like. This is our first generation prototype, mounted on the Unitree GO-1 EDU. (We’ll explain those scuff marks later on.)


InDro Backpack

What’s in the box


The box contains both hardware and software. On the hardware side, there’s a high-speed 5G modem, along with a Jetson Xavier NX (which manufacturer NVIDIA calls the “World’s smallest AI supercomputer”). The Robot Operating System (ROS) library is also stacked in there, along with the software required to use the ROCOS dashboard for controlling the system.

And what does that mean?

“The operator is able to send the control commands to the InDro backpack over a 5G or 4G network. And the InDro Backpack passes the commands and transmits that to the dog,” explains Kaiwen Xu of our Area X.O R&D engineering facility.

InDro Backpack also makes the most of the multiple sensors that come on quadrupeds like the GO1 EDU.

“Out of the box, the Unitree GO1 has an app. But it’s not the greatest at managing all of the camera feeds,” says Account Executive Luke Corbeth. “Through the ROCOS dashboard, it’s a lot easier to see each of the feeds and get the most out of the impressive hardware that’s in the units. There are five sets of cameras and three sets of ultrasonic sensors – so we can really ensure the client is getting the most out of those.”

In addition to that, the software libraries make the Unitree a fully ROS-enabled robot, which greatly expands its capabilities.

“That’s what makes Backpack valuable to the R&D community,” says Corbeth. “It means clients have access to all available packages to enable a wide range of applications, be it autonomous navigation, perception, motion planning, multi-robot systems – packages to ensure they can really jump-start their project. That’s the InDro value add-in.”

InDro has also made the User Interface super-intuitive, allowing an Xbox controller to control the robot via a laptop or desktop device. Even first-time users seem to have no difficulty telling these Backpack-enhanced dogs where to go, seeing their surroundings in real-time via video.


Who’s this for?


Who might benefit from an InDro Backpack-enabled quadruped?

Well, it depends on the use-case. For education, R&D and corporate innovation centres, the GO1 EDU with Backpack is a good choice. But Enterprise clients wanting to do outdoor inspections in more challenging environments will likely want a larger and more capable robot, the Unitree B1.

“The backpack was designed for the GO1 as a means of getting additional compute and teleoperations,” says Corbeth. “It can be used in simple and controlled environments, but as soon as it becomes more dangerous and complex it makes more sense to put the backpack on the B1.”

The B1 is capable of climbing larger stairs and negotiating more hazardous environments than the GO1 EDU. It also has an impressive Ingress Protection rating, making it better suited to these use-cases. That’s a photo of the B1 beside its smaller sibling below, taken at our Area X.O facility:



Roll over


If you were looking carefully at the first image of the GO1 EDU with that backpack, you’ll have noticed a few scratches on top. How did they get there?

Well, the Unitree quadrupeds are capable of righting themselves if they happen to fall over on some challenging terrain. They do so with a manoeuvre that’s like a dog rolling over. This gets up enough intertia for them to land on their feet. We took that into account when designing the Backpack.

“The backpack has a slim profile. We built it so that it can still roll over – even if it falls,” says Corbeth. “So it doesn’t compromise any of the functionality of the robot.”

(Observant readers will also notice a Unitree robotic arm in the top right of the image below. More on that in a future post.)


Making a good robot great


Out of the box, the Unitree robots are highly capable. But InDro Backpack clearly expands those capabilities. With this add-on, the units can be operated from hundreds or even thousands of kilometres away using an Xbox controller with no discernible latency. Multiple windows in the ROCOS dashboard allow for monitoring data from the Unitree’s various cameras and sensors. The addition of the ROS software library and Jetson EDGE computer further enhance capabilities for autonomous functions.

In short, this good dog suddenly becomes a great dog – with additional capabilities.

“A client can add LiDAR to the dog, they can also put a stereo camera on top for 3D Simulatenous Localisation and Mapping (SLAM), and these kinds of things,” says Kaiwen Xu.

Two InDro Backpack-enabled Unitrees are soon heading out the door to California, with more in production. It’s a unique solution, designed from the bottom-up by InDro.

“This product has really solidified us as kind of the go-to integrators for some of the platforms out of Unitree,” adds Corbeth. “It’s worth noting that the backpack is platform-agnostic. It can go onto any platform, including the AgileX platform.”

So just picture that Backpack on the highly capable Unitree B1, seen below. A perfect fit for remote inspections and surveillance.

InDro’s take


A big part of What InDro Does is develop products that can expand the capabilities and use-case scenarios of existing products. Innovations like InDro Commander and InDro Pilot are already making their mark in the industry, and InDro Backpack is next.

“Upgrading a quadruped with InDro Backpack is a significant value-add that can truly teach a new dog new tricks,” says InDro CEO Philip Reece.

“With growing demand for teleoperated solutions – particularly for remote locations like electrical substations and solar farms – InDro Backpack transforms Unitree quadrupeds, and other robots, into more powerful and expandible platforms. I’m very pleased with the work our Area X.O team has put into the development and production of this tool.”

Interested in learning more? Feel free to contact Luke Corbeth to schedule a presentation or demo. And if you have an Xbox controller, he might even let you drive!

Putting Sentinel through its paces at EPRI

Putting Sentinel through its paces at EPRI

By Scott Simmie


There’s testing. And then there’s “real-world” testing.

For example, InDro Robotics builds and tests drones and ground robots. We do this constantly, pushing for continuous improvements (and even breakthroughs) with our products. In BC, we’re frequently flying missions to test cellular connectivity or our new proprietary drone software, InDro Pilot.

At Area X.O in Ottawa, we routinely deploy our ground robots on missions to test tele-operations, new sensors, and even autonomous functions. (We have a real advantage here, because Area X.O is made for robots. There are several roads – and even traffic lights – designated for testing and use by autonomous vehicles.)

And while such research always provides us with useful data, it’s just not the same as putting technology to the test in a real-world environment.

That’s why we took Sentinel – our custom-built robot for monitoring and inspection at remote facilities – to Massachusetts.


Autonomous Robots

The EPRI challenge


EPRI stands for the Electric Power Research Institute. It’s a non-profit energy research, development and deployment organisation. EPRI is constantly doing research – collaborating with more than 450 private companies across 45 countries globally. The purpose, according to its website, is to “ensure the public has clean, safe, reliable, affordable, and equitable access to electricity across the globe.” EPRI shares its research with members, which represent virtually all facets of the power generation and delivery sector.

EPRI has multiple research facilities, including one in Lenox, Massachusetts. This particular location features an electrical substation that can be energised, de-energised – and can even simulate rain for testing purposes.

Earlier this year, InDro Robotics was one of a small number of companies to participate in research to analyse the effectiveness of remotely-operated and autonomous ground robots in a variety of conditions. The purpose was to determine the ability of such devices to carry out inspection and monitoring – including whether these robots could detect problems such as arcing.

InDro Robotics Sentinel

The InDro Team


We dispatched InDro Account Executive Luke Corbeth and Robotics Engineer Austin Greisman (along with Sentinel, of course) to the EPRI facility in Lenox, Massachusetts.

“EPRI’s goal for this program was to evaluate technologies that are capable of 24/7 autonomous substation inspection and security monitoring,” explains Corbeth. “This put Sentinel in a real substation environment, to conduct inspections and security patrols amidst powerful electrical currents.”

In fact, there was a series of specific tests during the week-long demonstration. These included all permutations of the following:

  • With the substation energised and de-energised
  • With simulated rain and without rain
  • During daylight and at night

That makes for eight separate missions carried out in different conditions – including an energised substation with simulated rain during nighttime, and a de-energised substation on a clear day.

In addition, each of the above eight missions was carried out both via remote teleoperations – and also autonomously. Factor that in, and there were 16 separate challenges.

And that’s not all. EPRI engineers carried out their own tests on Sentinel, seeing how well it handled inclines, manoeuvres through mud, what weight it could carry at what speeds, and battery life. On these tests, Sentinel performed very well.

“Once we were on site, the value that Sentinel brings to utilities became very apparent – especially identifying thermal signatures to identify (overheating) components onsite or intruders trying to break in,” says Corbeth.

“The performance at night and during simulated rain tests was very successful. They actually have hoses that go overhead and can blast the site with water.”

FYI, the image below is a screenshot from the secure, browser-based controller for Sentinel. The operator can see all key parameters, control propulsion and camera systems, in real-time.


Lessons learned


At the outset, we told you this was very much a real-world test for Sentinel. If this article were simply a piece of marketing, we’d tell you that everything went perfectly. But it didn’t, and there were lessons learned.

For one thing, we discovered that Sentinel’s track-based locomotion – though ideal in numerous demanding terrains – fell somewhat short in the heavy gravel bed of this substation. Pieces of gravel got caught in the tracks from time to time. As a result, we’re now building a rugged wheel-based variant of Sentinel specifically for this kind of surface (though the tracked version will still be available).

We also faced some challenges with autonomous missions. For one thing, at the time of testing Sentinel did not yet have an optical-based docking system for wireless re-charging (it does now). We also originally thought that a GPS-based guidance system would work in this environment. And while it did, we soon realized that SLAM (Simultaneous Localisation And Mapping) would be a better option. That feature will be integrated into Sentinels going forward.

“The opportunity to get onsite enabled us to test our autonomy package and understand what it’s good at, as well as what needs to be improved,” says Corbeth. “We believe we’re well on our way to a complete, 24/7 autonomous solution. I’d say we’re 85 per cent of the way there. This is new technology” 

InDro Engineer Austin Greisman on-site in Lenox with Sentinel

InDro Robotics Sentinel

InDro’s Take


Research and development, as we often say, is at the very core of InDro Robotics.  And a big part of R&D is testing outside of the confines of the lab.

And while we were very pleased with many aspects of Sentinel’s performance in the field, we also identified areas where there was room for improvement. Sentinel is now capable of fully autonomous docking to its wireless charging station, and we’re well along the path with fine-tuning SLAM on this device.

Full autonomy, as many of you know, is a difficult challenge. Whether it’s ground robots or drones, InDro has always taken a “Crawl, Walk, Run” approach. Sentinel is now hitting its stride with walking – and getting ready to run.

InDro’s “Drone-in-a-box” captures precision agriculture data without the hassle

InDro’s “Drone-in-a-box” captures precision agriculture data without the hassle

Recently, we told you about a really intriguing InDro Robotics solution.

It’s one that appeals to people who need drone data – but don’t have a drone or a certified pilot. It also appeals to people who like to keep an eye on their money, and can’t quite justify the expense of hiring a contractor to come on-site.

In a nutshell, it works like this: InDro ships you a fully-charged drone with the appropriate sensor for the job. We arrange for a mission time when you’re available and the weather is cooperating.

And then what? You simply pull the drone from the box, follow our instructions over the phone, and we’ll do the flying.

In our recent post, we talked about how this is ideal for solar farms – and it is. But that’s not the only sector where we can help. Our “Drone-in-a-Box” program is also ideal for precision agriculture, an area where it’s helpful to have a professional fly the mission and crunch the data.

And that…looks like this:



You might have noticed that video is from 2017. Which means InDro Robotics is now in its fifth year of offering remotely piloted services.

But some things have changed since that video was produced. We are now capable of remotely piloting using 5G network connections. That translates into near-zero latency for our remote pilots – and more. We now have the ability to stream even extremely dense data directly to the cloud. This means clients with 5G service in their areas have only a minimal wait time before receiving actionable data.

In the early days of this service, InDro would process the data once the drone was returned. With direct-to-cloud uploads, processing can begin literally while the mission is being carried out.

What’s more, literally any kind of aerial inspection can be done in Canada using our system. If you haven’t seen it, please take a moment and check out this more recent video: InDro inspected a large solar farm from more than 500 kilometres away:


InDro’s Take


Precision agriculture requires high-end hardware, software – and expertise. It’s not something the average farmer can simply jump into.

Yet a single flight can provide a wealth of data surrounding moisture, crop health, nutrient levels and more. That data allows farmers to save costs through the precise applications of fertiliser, water, herbicides and insecticides only where they are needed.

Clients have told us they previously shied away from precision agriculture using drones due to cost and complexity. Our “Drone-in-a-Box” is a cost-effective solution that produces results.

If you’re interested in precision agriculture, solar inspections – or any other area where a remotely piloted drone flight can capture meaningful data, get in touch. We’ll ship you a drone, we’ll fly the mission – and you’ll receive the data you need.

Meet InDro Pilot: A powerful 5G hardware and software suite for Enterprise drones

Meet InDro Pilot: A powerful 5G hardware and software suite for Enterprise drones

By Scott Simmie


Nothing turns our crank quite like developing something brand new; something that’s never been done before. That’s really the heart and soul of R&D.

And that’s also why we’re so excited about InDro Pilot – a new hardware/software solution created by InDro Robotics that will give Enterprise drones and their operators the equivalent of superpowers.

Okay, perhaps there’s some slight hyperbole in that statement. But there’s no question that InDro Pilot will dramatically expand the capabilities of drones using the Pixhawk flight controller, the standard in many Open-Source drones.

InDro Pilot enables operations over 4G and 5G, meaning you could pilot a drone from across the country (providing you have a visual observer with eyes on the flight or a Beyond Visual Line of Sight Special Flight Operations Certificate). It also enables the secure transmission of even highly dense data (such as 4K streaming video) directly to the ground or the cloud with minimal latency. No more pulling out MicroSD cards and waiting for uploads. Realtime data, while you’re flying the mission, sent where it’s required.

Needless to say, this didn’t happen overnight. Getting here required an immense amount of effort from our Area X.O R&D facility. And, in particular, the project’s lead engineer Ahmad Tamimi – seen here on the right. When this photo was taken in the fall of 2021, Ahmad was in the thick of developing the 4K streaming component of the system and integrating it on our Wayfinder drone (foreground).


Canada Robotics

There’s a backstory here…


The catalyst for InDro Pilot was a technology challenge. The Ontario Centre for Innovation, in conjunction with Ericsson and the ENCQOR 5G testbed, put out a call to Canadian technology companies to enable drone flights over 5G. What’s more, the challenge required the successful transmission of uncompressed 4K video – which will help enable Beyond Visual Line of Sight flights because it provides the pilot with greater situational awareness. There were other bits and pieces, which we’ll explore at a later date. Point is, being the successful applicant in this technology challenge is what started us down the InDro Pilot road.

As we explain what InDro Pilot is all about, we’re going to get into a few names of various components. But big picture? It’s a combination of hardware and software that collectively brings about both enhanced capabilities for the drone itself (ie 4G, 5G, dense data realtime uploads etc.) as well as enhanced options for the drone operator to further customize drone sensors and peripherals for any given missions via dashboard. 

Ahmad Tamimi pulled together this nifty graphic, which provides a high-level view of the system:

Drones Canada

The basics


In this post, we’re going to focus on InDro Captain and InDro Capsule.

Let’s start with the latter.

InDro Capsule is hardware, integrated into a capsule. Think of it as a box that can be easily attached to any Enterprise drone using a Pixhawk flight controller, because that’s what it is. That hardware includes:

  • A high-speed Quectel modem for transmitting even dense data to the ground and the cloud in real-time
  • A Jetson-based Edge processor
  • Specialized antennae for both data transmission and Command and Control
  • More IP-protected secret sauce we’ll unveil soon, which has significant implications for Detect and Avoid scenarios

InDro Captain, meanwhile, is the onboard software. It enables communication with the InDro Base (our ground station), secure data transmission to the ground or cloud, and can easily integrate peripherals like a winch or additional sensors.

And what does it look like? Well, the magic is contained within that hexagonal dome – and we’re currently making that dome smaller and lighter. Check out those wild antennae, chosen after a detailed calculations and simulations. And that white one with the InDro logo? We can’t wait to tell you what that one does.

Canada Drones

Another look


These pix were taken during the R&D phase of InDro Pilot, so they’re just quick phone grabs. But we have a feeling you’ll probably like to see at least one more:

Canada Drones

By the way, that’s a high-end mirrorless camera on that gimbal. With InDro Pilot on board, transmitting its uncompressed 4K output at minimal latency is a breeze.

When flying over 5G, the feed from this sensor (or any other) can be captured on the ground and simultaneously uploaded to the cloud. Our new InDro Link software (more on that later), securely integrates with third-party cloud services such as AWS, Azure, Google and more.

As 5G networks expand across North America and globally, this has significant implications for not only remote teleoperations and missions on private 5G networks, but also for realtime capturing of dense data. Providing there’s a 5G network at each end of the mission, a drone equipped with InDro Pilot can be controlled from across the country – with the pilot (and others) watching the data acquisition and all other aspects of any given mission in real-time.




InDro Pilot is an entire ecosystem for 4G and 5G drone operations, including complex missions involving LiDAR, thermal sensors – even winches. The user interface reflects that, with “modules” (ie winch, etc.) that can be added to customize for each mission. Here’s a look at just one of many modules, offering granular control and at-a-glance monitoring.

Canada Drones

“The InDro Pilot system is going to truly expand the capabilities of many Enterprise drones,” says InDro Robotics CEO Philip Reece. “Just as our InDro Commander module has made ground robots more powerful and customizable, InDro Pilot will do the same for UAVs.”

InDro Robotics has already delivered Wayfinder drones equipped with the InDro Pilot system to clients from the regulatory world. Commercial sales will commence shortly.

Interested in learning more? Feel free to contact Peter King.

InDro’s Take


As we said at the outset, nothing gets us revved up quite like creating new solutions. InDro Pilot has a myriad of powerful capabilities not outlined in this story – including some features that will definitely contribute to the safety of Beyond Visual Line of Sight flights though a proprietary system that will alert nearby private aircraft to the drone’s proximity during missions. So we’re excited about this product, much in the same way we were excited when we released InDro Commander for ground robots.

And while all Indro Robotics developments are team efforts, there’s often an individual who really takes the lead and owns the project. In this case, Ahmad Tamimi truly took charge, often working on it alone during those dark and early days of the global pandemic. InDro Pilot is a huge accomplishment, and we applaud Ahmad and the rest of the InDro team.


305, 31 Bastion Square,
Victoria, BC, V8W 1J1

P: 1-844-GOINDRO


copyright 2022 © InDro Robotics all rights reserved

YOW drone detection program featured in WINGS magazine

YOW drone detection program featured in WINGS magazine

The Drone Detection Pilot Project being carried out at the Ottawa International Airport has received some traction in WINGS Magazine, Canada’s leading online and print publication about the aviation world.

InDro Robotics is one of the partners in the project at YOW, supplying hardware and software used to detect drones that might pose a threat to passenger, private and cargo aircraft using the airport. The program has gathered a lot of valuable data since it began in the fall of 2019.

But what it gathered during the anti-vaccine mandate protests in Ottawa in February of 2022 really raised some eyebrows. Drones were detected flying in a restricted flight zone over Parliament Hill and elsewhere in the downtown Ottawa core, with a spike during police operations to clear the protests.

A total of 27 different drones carried out 59 flights over a period of four days. Of those, 25 flights exceeded 400’ above ground level (Transport Canada’s limit, except in special circumstances). Eleven flights took place during hours of darkness – though that’s not a violation of regulations providing the drone is using lights that allow the pilot to maintain Visual Line of Sight and orientation.

Nonetheless, these flights all took place in restricted airspace. A small number were carried out by law enforcement, but the vast majority were not. As you’ll see in the following graphic, 15 unique drone IDs were detected, and 25 of the 59 flights were carried out above 400 feet (including one at 1583′ AGL).

Drone Detection

Wake-up call


Our initial story about this caused quite a stir, including this article in the Ottawa Citizen – along with attention from Canadian airports that do not currently have drone detection programs. And now, WINGS Magazine has picked it up.

The article appears in the May/June Digital Edition, which is also a print edition.

Drone detection

Drone detection, made simple


The system in place at YOW includes a micro-Doppler radar, capable of detecting the movement of small drone propellors at close range. It also features a sophisticated antennae array, which has been picking up flights as far as 40-50 kilometres from the airport.

The system is automated – and the data is banked. If a drone poses an immediate threat to a flight path, an alert is sounded and airport authorities can quickly respond.

You can read the story that appears in WINGS Magazine here. We’d also like to thank editor Jon Robinson for picking this up.

InDro’s take


We’ve pleased to be an integral part of the YOW Drone Detection Pilot Project. The results have been greater than we all anticipated, with highly granular data that has helped YOW educate drone pilots and also prepare an airport protocol for those rare but critical occasions when RPAS flights have the potential to impinge on the safety of crewed aircraft. The system provides enough advance warning that aircraft pilots can be given a heads-up and instructions to minimise any conflict with drones; the system is also capable of identifying the location of the RPAS pilot.

Monthly data is shared with program partners and has generated interest from other Canadian airports. The data detected during the Ottawa protests has also attracted the interest of those responsible for the safety of Parliament Hill and other critical buildings in the downtown Ottawa core.

For more information on how a drone detection system might benefit your airport or critical infrastructure, please don’t hesitate to contact us here.

InDro Robotics “Sentinel”

InDro Robotics “Sentinel”

By Scott Simmie, InDro Robotics

Imagine, for a moment, the challenges of owning and maintaining a remote asset. Further picture that it’s, say, an unstaffed electrical substation located some 800 kilometres from your base of operations. The area is prone to fog, rain and snow. To top things off, the last 200 kilometres consist of a washboard gravel road. There are no hotels or other accommodation nearby.

Keeping a watchful eye on such a facility poses challenges.


The old way…


Companies have traditionally relied on one of two methods – or a combination of both – to monitor remote assets. The most common solution has been to install security cameras and motion sensors and simply keep an eye on monitors. In addition, companies often dispatch employees for occasional inspections.

Unfortunately, fog and rain often mean the security cameras can’t get a clear picture. Even on a decent day, these cameras can’t get up close and personal to truly inspect the assets and determine whether maintenance might be required. Dispatching an employee costs time and money – and isn’t something you can afford to do on a frequent basis.

But you also can’t afford to to not know what’s happening. After all, it’s an expensive and critical asset. If only there was a way to have boots on the ground…without actually dispatching an employee.

It’s precisely this kind of scenario – as well as many others – that has led InDro Robotics to create a solution. It’s a ground-based, all-terrain/all-weather robot designed from the ground-up to allow easy monitoring anywhere, anytime – and all from the comfort of your base of operations.


InDro Robotics “Sentinel”


That’s it – right there in the picture below. Now let us tell you why we’re so excited about this product.


InDro Robotics Sentinel

A workhorse


Sentinel is built on the rugged AgileX Bunker platform. The weather-resistant Bunker has a range of 10 kilometres and can take on pretty much any terrain. Its track system features differential rotation, allowing the operator to get up close and personal with any asset – all without leaving the office.

But that’s just the beginning. Sentinel is packed with features that allow for easy collection of meaningful data, including:


  • 20x optical zoom for detailed inspection
  • Radiometric thermal imaging to detect anomalies
  • 4G/5G connectivity for remote teleoperation
  • Web-based console and cloud storage for operations and data

Sentinel is also simple to operate. Using an intuitive handheld controller, the operator has full control over Sentinel’s operations while watching a real-time live video stream from the robot’s RGB and thermal sensors. The display includes data on battery reserves, CPU usage, GPS location and more.

We’ve pulled together a brief video to give you a better sense of what it can do:

A deeper technical dive


What helps pull all of these abilities together is another InDro innovation. It’s a box that contains the brains and sensor/data interfaces that make Sentinel so easy to use. That box contains an onboard EDGE computing device utilizing a Jetson NVIDIA processor, and also the industry-standard Robot Operating System (ROS) software required for the various sensors. We call this solution InDro Commander, and you can read about it here.

You could think of Commander as kind of like a symphony conducter, bringing all the various elements together in a synergic fashion. And yes, there are plenty of key elements, including a wiper for the 20x optical camera – even a thermal defogging component for the lens.

All of this – and more – in a package that’s nearly impervious to the elements.

The robot, and its ‘doghouse’ are IP67 rated, meaning they’re protected from contact with harmful dust, sand, ice shards, hail, rain and water sprays,” explains InDro Account Executive Luke Corbeth.

“Once returning home, the ground vehicle comes in contact with the charging pad and is wirelessly fast charged. This means that Sentinel can withstand many environmental conditions with minimal maintenance required. With that said, should it need maintenance it has a modular design so unlike other UGVs, the brains are separate from the body. As a result, if a component malfunctions we can simply replace it with a new one and bring the damaged one in for repairs to reduce on-site downtime.”

The secure, browser-based operations console is a snap to learn and provides live data while Sentinel is being operated. Whether it’s monitoring for intruders or checking the temperature of assets for preventative maintenance, Sentinel has you covered. Check out the zoom capabilities in the screengrabs below: 

Inspection Robot
Inspection Robot

Sentinel is up for the task(s)

Though we’ve focussed on inspection – there are many different kinds of inspection for which Sentinel is well-suited. These include:

Operational rounds

Also known as preventative maintenance, these kind of inspections are designed to identify potential problems before they become serious. Here, both optical and thermal data can plan key roles. The ability to identify anomalies before they become problematic can be accomplished through regularly scheduled tasks and data analytics.

Emergency Response

Emergencies, by their very nature, are unpredictable. They tend to happen quickly and without warning. The ability to respond to emergencies depends both on a response plan and the ability to obtain situational awareness as rapidly as possible. Sentinel is built to withstand hazardous environments and provide treads on the ground immediately – regardless of how remote your operation is. (And yes, this robust device is also suitable for First Responders.)

Security monitoring

“Maintaining the security of critical infrastructure is vital to minimizing downtime, customer attrition, reputation loss and compliance costs,” explains InDro’s Luke Corbeth. 

Sentinel can not only keep a regular watchful eye using its RGB Tilt-Pan-Zoom camera, but also has the added benefit of radiometric thermal imaging. In this example, an intruder is quickly detected by their heat signature. And while this was shot during daylight hours, there’s no such thing as the “cover of night” when using thermal sensors:


Inspection Robot

Built for the future


While many users will want to dispatch Sentinel using a human operator, the robot can also be programmed for scheduled missions using a pre-planned path. Whether its once a week or twice a day, Sentinel can carry out these missions with no human intervention. And that’s just the beginning.

“With InDro Commander and the Jetson onboard, Sentinel has the ability to learn change detection and obstacle avoidance,” says InDro Robotics CEO Philip Reece. “And with the addition of a LiDAR sensor, this machine could even carry out SLAM (Simultaneous Localization and Mapping) missions in unfamiliar environments.”

It also has some distinct advantages over a UAV, says Reece.

“Drones are great in certain situations, but regulatory permissions for Beyond Visual Line of Sight operations are not easy for companies to obtain. Sentinel does not require a permit and is easy to operate. Plus, with its optical zoom and thermal capabilities, this robot makes it simple to acquire detailed data of any asset visible from the ground.”

InDro Robotics is now taking orders for Sentinel – and even arranging remote “test-drives” for prospective clients. You can contact Luke Corbeth for more information here.