The InDro Robotics “InDro Commander” for ground robots

The InDro Robotics “InDro Commander” for ground robots

By Scott Simmie, InDro Robotics

 

Today, building basic robots isn’t hugely challenging for engineers – though, of course, some robots are a lot more complex than others.

The really tough part is making those robots be useful.  Tasks like navigating, capturing thermal imagery and other data – even identifying and manipulating objects – all require much more than wheels and sensors and end effectors (the robotic equivalent of hands). Regardless of whether the robot is simple or complex, it needs brains.

Those brains consist of both hardware and software, with specific bundles of code that can help with specific tasks. And that’s where the Robot Operating System, or ROS, comes into play. ROS.org is a repository of software packages, purpose-built for specific robotic applications by a global network of collaborators.

 

via ROS.org

As the organization’s website explains it, ROS “is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

“Why? Because creating truly robust, general-purpose robot software is hard. From the robot’s perspective, problems that seem trivial to humans often vary wildly between instances of tasks and environments. Dealing with these variations is so hard that no single individual, laboratory, or institution can hope to do it on their own.”

And so ROS could be thought of as a super helpful toolkit, where collaborators upload and share code they’ve developed – and also download and integrate (or even modify) code others have written in order to make their robot carry out required tasks, including specific ways of communicating with an operator or base station.

 

ROS is cool, but could it be even cooler?

 

Some time back, we started to ponder this question. Specifically, what if you could pack some of that software in a box – along with the hardware required to run it? And what if that box could easily be integrated to a ground-based robot (most already use ROS drivers) to get it up and running as seamlessly as possible?

That’s the concept of a new InDro Robotics product called InDro Commander, developed by Engineering Manager Arron Griffiths in conjunction with the InDro Robotics Area X.O team.

Arron had been working with ROS for about five years, so he already had a great understanding of the available software tools. Arron has worked in robotics for more than a decade now (he was also the Senior Application Engineer at Clearpath Robotics prior to joining InDro Robotics). And Unmanned Ground Vehicles, or UGVs, is an area that has really picked up for InDro since we partnered with Chinese robotics leader AgileX. The picture below is of “Scout” – one the company’s UGVs.

 

AgileX Scout

With a solid understanding of the software and the hardware required to run it, Arron realized there could be tremendous potential for an “all-in-one, bolt-on” solution. Such a device could get an ROS-compatible robot up and running much more quickly, with zero hassle. In a nutshell, that’s the concept behind InDro Commander. Here’s Arron:

“We’ve created a hardware product around the concept of a simple ROS module, which can be utilized on multiple different robot types. We’re also trying to make it platform-agnostic. We actually don’t want to make a robotic platform, we want to make a box that has robotic systems in it, to make other robotic platforms smarter.”

We’ve been using our InDro Commander on the AgileX Scout Mini, a great R&D platform. And, well, it works like a charm. InDro Commander is also compatible with all the AgileX platforms and any other ROS-ready robot platform.

In fact, we’re so proud of this InDro Robotics innovation that we produced this video for the recent ROS World 2021 Virtual Conference. (At that time, we were calling it ROS-IN-A-BOX):

 

InDro Commander integrates easily

 

That’s a key piece here. The box contains everything a developer or end-user would need. EDGE computing is done onboard by the NVIDIA Jetson processor, reducing latency and unlocking potential for AI-related tasks like object recognition or change detection. Connectivity is via 4G/5G, and the box can utilize the CAN (Controller Area Network) protocol, Serial or Ethernet. The ruggedized box has its own cooling system and power regulator, and has an Ingress Protection factor of IP55. It’s literally a solution you can bolt onto pretty much any ground-based robot and begin remote teleoperations over 4G or 5G.

And yes, InDro Commander vastly simplifies things.

“It’s just two wires (battery power and communications) people plug in,” says Arron. “The box already has cameras, communications, power regulators – all inside the box. So you’re not fiddling with all of these various peripherals. It’s truly a self-contained ecosystem. Suppliers, OEMs, they don’t have to think – they just have to bolt this box on.”

ROS-IN-A-BOX

InDro Robotics has long been known for its R&D in the drone space, and has garnered multiple industry “firsts” as a result. Now, with the company’s expansion into ground robotics, InDro Commander is a significant breakthrough – not only for InDro, but for others who will immediately see the benefit of this solution.

“We work closely with academia and collaborate with industry partners and end users,” explains InDro Robotics CEO Philip Reece.

“The common question is: ‘How can we integrate this sensor or piece of tech with this robot or system?’ Now we have a simple working answer to this question, as InDro Commander is designed as a Plug and Play all-in-one module and is platform agnostic.” (Providing the platform either has a ROS driver already, or working example (Python/C++) code which Indro can use to develop a custom ROS driver.)

ROS-IN-A-BOX

Reece says the creation of this product is a very different solution, which he anticipates will help many in the Unmanned Ground Vehicle (UGV) space.

“There are many UGV companies, and more start up every day. Ninety-five per cent of them only make custom solutions for their own. hardware. InDro is doing things differently,” he says.

“InDro Commander is an important addition to our technology development, as we are supplying the industry with a number of different ground robots, and they are interacting in many different ways. InDro Commander will build on the benefits of a common operating system such as ROS, by bringing a standard suite of sensors and systems (camera, GPS, IMU, Computers Power distribution, communications, 4/5G) that can all be simply but powerfully integrated onto any flavour of UGV.”

InDro partners with ROCOS

We’re already quite proud of the InDro Commander solution. But we’ve taken things a step further, partnering with ROCOS. The company’s Robot Operations Platform allows an operator to connect, monitor and control robots – whether it’s a single unit or an entire fleet. But that’s not all.

ROCOS was recently acquired by DroneDeploy, one of the world leaders in drone data acquisition, interpretation and photogrammetry. And what does that mean? Well, imagine having data acquired by a ground robot seamlessly integrated with what is captured by air and presented as meaningful data for the end-user. Further picture a desktop, browser-based console where you can program aerial or ground-based missions and monitor a feed as they unfold in real-time.

Force multiplier

Whether the use-case is industrial, agricultural, security – and much more – having eyes in the air, combined with robotic boots on the ground, can only be a force multiplier.

We’ve already seen what InDro Commander can do in our own testing; we can’t wait to see what others do with this solution.

For more information on InDro Commander, contact us here.

InDro Robotics, Rogers make first drone / RPAS flight in Canada using 5G network

InDro Robotics, Rogers make first drone / RPAS flight in Canada using 5G network

InDro Robotics has flown two drone missions utilizing a Rogers 5G network – another important Canadian first. The flights took place at the University of British Columbia (UBC) in April, 2021. 

This milestone demonstrated potential future applications of 5G-enabled autonomous flights in Canada and around the world.

The two UAVs, both manufactured and operated by InDro Robotics, were standard quad models integrated with a 5G transmitter/receiver. The RPAS units used the Rogers 5G network at UBC to perform various tasks during test flights.

InDro flies drone missions over Rogers 5G network

The 5G network was installed by Rogers as part of a three-year, multimillion dollar partnership with UBC. The goal is to build a real-world 5G hub on campus that will be the blueprint for 5G innovation and research in Canada.

Drones generally communicate using standard radio frequencies. These have limited range and data bandwidth. Flying drones over the Rogers 5G network, InDro Robotics can share videos and even dense data with multiple users anywhere on the network at a much faster rate.

Rogers 5G Drone
Rogers 5G Drone

The InDro Robotics mission flying drones over 5G networks

The drone flights, carried out by InDro Robotics over a Rogers 5G network, were highly successful. The drones completed tasks such as picking up and dropping off a box containing first-aid medical supplies from one location to another. 

InDro Robotics President and CEO, Philip Reece, said the ability to fly utilizing a 5G network opens up more opportunities for new uses for UAV technology, such as deployment during natural disasters and critical incidents. The use of 5G allows sharing data with multiple users. More importantly, it enables the operation of UAVs from off-site command centres that could be hundreds or thousands of kilometres away from the mission. 

Two greatly anticipated technologies that have developed over the past years are commercial drones and 5G networks. On their own each have an amazing impact on many industries. Together, they do so much more. We now have drones flying over public and private 5G networks that can collect and send data into the cloud for AI processing and back to offsite command centres with near-zero latency. This enables drones to operate smarter and safer, sharing critical data with those that need it instantly. This helps keep First Responders out of harm’s way, and allows engineers to inspect infrastructure faster and more efficiently. It also helps keep airspace safe, and so much more,” said Reece.

We are proud to be leading the industry in deploying drones over cellular networks in North America.”

InDro Robotics proud to announce partnership with leading robot chassis manufacturer AgileX Robotics

InDro Robotics proud to announce partnership with leading robot chassis manufacturer AgileX Robotics

InDro Robotics has partnered with best-in-class robot manufactures, AgileX Robotics.

Founded in 2016, AgileX Robotics is a leading robot chassis manufacturer and mobile robot system solution provider in China. AgileX Robotics has developed mobile robot chassis products such as unmanned ground vehicles (UGV), indoor small autonomous guided vehicles (AGV) and modified wire-controlled electric robots. These devices can serve in security and industrial inspections, agricultural irrigation, logistics and transportation, detection and exploration, scientific research and education.

InDro Robotics, AgileX partner on ground robots

Together, InDro Robotics and AgileX are  developing and distributing these UGVs in North America.

This partnership is a momentous step for InDro Robotics, as AgileX’s platform is a perfect fit for robotics research. This opens the door to further applications, including integrated sky and ground robotics, indoor/outdoor data acquisition, mapping, path planning, and teleoperation.

AgileX

AgileX ground robots a perfect match for InDro Robotics

“The technology that we have been developing with clients on the drone side has provided us with breakthroughs and industry firsts, many of these clients also have environments that a robust ground robot would be well suited for, be it tele-operated, automated or working in unison with the drone. As such we called upon an established partner of ours — AgileX Robotics — to provide us with a reliable base to build upon, allowing us to rapidly add our technology to theirs and bring to market new solutions,” said Philip Reece, President and CEO of InDro Robotics.

Currently, both companies are continuing to work on advancing Robot Operation Systems (ROS) and creating solutions to simplify the development of complex robot behavior throughout a vase range of robotic platforms

AgileX

InDro Robotics, AgileX offer SCOUT MINI R&D platform

One of these platforms is the R&D KIT, a fully integrated solution for robotics research and development with AgileX Robotics’ SCOUT MINI platform. The R&D Kit includes with a full suite of sensors to support indoor SLAM, navigation and vision based applications, as well as a powerful NVIDIA Jetson Nano computer comes pre-installed with Linux and ROS ubuntu 18.4. 

The SCOUT MINI R&D kit accelerates robotics applications and research by eliminating the need to design, manufacture and integrate a complex robotic system. 

The Ranger Mini is another highly successful platform developed by AgileX Robotics. The Ranger Mini is a new Omni-directional UGV that is based on the new four-wheel and four-turn control theory. The product adopts an independent drive module design with integrated drive and steering. It includes a number of flexible driving modes and combing powerful maneuverability and flexibility that will bring more possibilities for mobile robot platforms for different applications.

“The Ranger Mini is a very new and special technique that we use for mobile robots, and you can never find this type of product in other parts of the world. Through working on this with InDro Robotics, I believe that we can easily see these products in the North American markets,” said Brand Xue, Lead of Global Sales & Marketing at AgileX Robotics.

“InDro Robotics is the bridge that can bring our latest and best technology mobile robots into the North American market.”

InDro Robotics delivers COVID-19 tests by drone in B.C.

InDro Robotics delivers COVID-19 tests by drone in B.C.

Throughout 2020, healthcare providers of Penelakut Island in British Columbia, Canada, were challenged with a very difficult situation. 

Due to the COVID-19 pandemic, a single ferry boat was accessible between the island and the nearest medical lab located in Chemainus on Vancouver Island, putting the timely transport of samples at risk. 

The process of getting the supplies to the lab took hours to complete, and one of the island’s three nurses had to travel with the supplies, making them unavailable to provide health services during the day.

InDro Robotics was tasked by the Island to begin deploying a Unmanned Aerial Vehicles (UAVs), or drone, to expedite the transportation of COVID-19 tests,

To start evaluating this problem, the team at InDro Robotics worked alongside Penelakut Island’s residents in strategizing a plan to fly samples using specialized drones and navigation software. Penelakut Island is currently home to over 1,000 people from the Penelakut First Nations community.

While InDro Robotics had the technology to fly between both islands, connection latency became a key issue during the trials.

Often drones are equipped with satellite connectivity solutions to accommodate the real-time video streaming needed to enable Beyond Visual Line of Sight (BVLOS) operation of UAVs (Unmanned Aerial Vehicles). However, according to Philip Reece, President and CEO of InDro Robotics, satellite is hindered by as much as 7 seconds of latency, which is way too much to provide safe operations for BVLOS.

Transport Canada also requires companies to use technology features that track signal

strength during a UAV’s journey. This meant that any solution chosen by InDro Robotics would need to support such features while integrating their proprietary flight navigation software.

As a solution for the constant high-performance connectivity needed for its drones, InDro Robotics deployed Cradlepoint’s NetCloud Service for Mobile, with the Advanced Plan, and wireless edge routers built for in-vehicle use. NetCloud’s cellular signal monitoring and thermal mapping features would allow InDro Robotics to optimize performance and safety during the drones’ route.

Using Cradlepoint’s NetCloud API, InDro Robotics was able to pull GPS-based cellular health information into the company’s flight navigation systems.

These endpoints also leveraged LTE service, provided by Rogers, instead of satellite connectivity, which carries too much latency for the real-time video streaming necessary on these flights.

The cloud-managed cellular connectivity would ensure that the low-latency video streaming can be essential to successful drone flights, and the map-based performance analytics can still be necessary to optimize flight patterns while meeting Canadian drone regulations.

“Using an enterprise-grade router on our drones allows us to stream video well from two on-board cameras along with full command and control, which is essential as we continue to expand our UAV products and services,” said Reece.

InDro Robotics also used NetCloud’s GeoView suite of location-based features forregulatory requirements. This was used to save time and money during the project, as InDro Robotics was able to track cellular health analytics and identify “dead zones” on a heat map during several test flights in various weather conditions on various routes. This lead to evidence-based decisions about the best possible flight paths to and from the island for its UAVs.

 

Fortunately for residents of Penelakut Island, these LTE enabled drones can mean medical supplies and COVID-19 tests will be swiftly transported in a shorter time-frame. This also meant that local medical professionals could offer more time to serve their patients on the island.

 

END NOTES

 

InDro Robotics is a leader in drones, or  Unmanned Aerial Vehicles (UAVs), as well as the first North American company to develop beyond visual line of site (BVLOS) technology with regulatory approval for emergency and first responder missions. InDro Robotics has accumulated thousands of flight hours and has collaborated with leading agencies such as Transport Canada, Canadian Space Agency, and NASA.