Long winter? Pre-flight checklist for drone pilots

Long winter? Pre-flight checklist for drone pilots

By Scott Simmie

Depending on where you live in North America, it’s that time of year when many of us are dusting off our drones for the first time since we put them away last fall.

Some pilots are meticulous about this process. But we suspect – given the large number of recreational pilots who fly only occasionally – they’re in the minority. So we thought it would be useful to pull together a quick guide for those preparing to return to flight.

For that, we contacted our resident expert, Kate Klassen. Kate is widely known in the both the traditional aviation and drone worlds. She’s a mult-rated commercial pilot, a pilot instructor – and a drone expert. (In addition to flying and creating one of Canada’s most popular online drone courses, Kate is also a member of Transport Canada’s Drone Advisory Committee, or CanaDAC.)

Kate has also created and fronts the excellent new FLYY online drone learning resource portal, which is fully up-to-date for those seeking drone skills (including those who want to obtain their Basic or Advanced RPAS Certificate) in 2022. Here she is:

FLYY
Because of her wide-ranging expertise, Kate is one of the best people we could think of to help us safely return to flight.

“The fact your drone hasn’t been flown, and you haven’t been flying, increases the risk of your first flight. So I think it’s good to have a plan,” she says. “You want to make sure that you’re setting yourself up for success by taking the time to prepare for that first flight and the ones that follow.”

Makes sense to us. And while it’s tempting to simply charge up and hit the sub-400′ skies, Kate says a more methodical approach will save you from unnecessary problems.

 

What do pilots of real aircraft do?

 

Well, whether they’re flying a Cessna or an Airbus, they have a rigorous protocol to ensure everything is looking good prior to takeoff. And the same systematic approach applies to flying drones (which, of course, are also aircraft).

We’ll have a full checklist in a moment, but Kate recommends that you think of this overall process in terms of systems. Those systems include software (ie firmware), power (batteries), propulsion (props and motors), fuselage – and even regulatory (Transport Canada or FAA authorization, where required).

“Regardless of whether you’re using commercial off-the-shelf systems or standalone flight packs, you’ll want to do as much as you can to confirm the battery’s health before you trust it in flight,” she says. “So that would be not just charging, but balancing the cells and using any resources like the battery health tools within a flight app to confirm their reliability before you get airborne.”

Kate also recommends a physical inspection of the batteries themselves. This is great advice. A couple of years ago, we pulled our own Mavic Pro from the basement, updated the firmware and pulled out the charger. But something about one battery caught our eye: There was a hairline crack in the plastic shell itself. The battery had never been dropped, so we had to assume there had been some swelling. Better to safely dispose of such batteries than risk charging them.

Mavic Pro
This also happened to us with a different drone.

We had loaned out a Phantom 4 Professional to a trusted and experienced friend. When it was returned, we simply put it away without checking it. Come spring, we noticed one battery was sticking when inserted. A close inspection revealed, again, a hairline crack. (There was also a really fine sand stuck to the lens protector.)

Phantom Drone
Had we not been looking carefully, we could have easily tried to charge – or even put the drone in the air – with a damaged battery. If there’s any physical damage like this, particularly in conjunction with apparent swelling, safely dispose of the battery at a municipal electronics waste facility. Don’t simply throw them in the garbage, unless the possibility of putting out a rogue garbage-can fire appeals to you.

Firmware and cards

We don’t want to rain on Kate’s checklist parade. But we do feel it’s worth emphasizing the importance of ensuring your drone and app are fully updated before you get to the field. It’s a real drag if you get out there and are faced with a 356 megabyte download by phone before you can fly. FPV pilots might also want to do a firmware version check for their goggles and look for any updates for their flight controller etc. via Betaflight Configurator. Ensure you have the NAV Drone app and manuals on your mobile device and that they haven’t been sent to the cloud due to their disuse.

Also – and we’ve been bitten by this one – be sure to have your MicroSD cards with you. If you’re anything like us you may have borrowed a cable or card from your drone kit while it sat and you’ll want to make sure you’re stocked up before you head out.

That’s not all. Just because you’ve passed your Transport Canada exam and have your Basic or Advanced RPAS certificate – that doesn’t necessarily mean you’re legal to fly.

“If it’s been 24 months or more since your last recency exercise, like getting your certificate in the first place, you’ll need to complete a recency exercise before you’re legal to fly,” says Kate.

Drone Delivery

On with the show!

Okay. You should have the basics by now. Kate has been kind enough to put together a full checklist that you can print out for your pre-flight checks. Here’s a screen grab, and you can download the file here.

 

Drone Checklist

And come Fall?

We hate to think that far in advance, but the reality is that winter will again come. But that doesn’t mean you need to shelve your flying skills. Kate recommends you consider practicing indoors or use a simulator during the off-season.

“A non-GPS cheapie micro-drone that you can fly around inside will keep your thumb and stick skills fresh. Some drones even have a simulator that can be used to practice your skills as well, and there are also wireless dongles available for practicing FPV skills on your laptop or desktop.

 

InDro’s Take

 

We fly professional missions on a regular basis. Most of these flights involve large, expensive heavy-lift drones. Whether Kate is at the sticks or someone else, we always go through a thorough pre-flight checklist. We do a preliminary check before heading out to the field, and a more thorough examination prior to arming the drone. We’ve caught a few things while doing this that saved us from having issues in the air.

We hope you make this a regular part of your own safe piloting pratice, if it isn’t already. Once again, you can download Kate’s pre-flight checklist here. And, if you’re interesting in upping your skills (or obtaining your RPAS certificate), check out Kate’s outstanding FLYY program.

InDro Robotics hits the podcast circuit

InDro Robotics hits the podcast circuit

By Scott Simmie

It’s been a busy week for InDro Robotics on the airwaves of the internet.

Two of our best talkers were asked to be guests on two separate industry podcasts, and the final products of both were released within two days of each other. Our CEO, Philip Reece, was the first up to the microphone, followed by Strategy and Implementation Specialist (and widely recognized training professional) Kate Klassen.

Because Philip went first (and because he’s the boss), we’ll start with him.

Philip was asked to appear on a podcast called Inflection Points. The highly rated podcast (Five Stars!) describes itself as exploring the “vision of the future of network-based technology.”

Because many of our products (and much of our R&D) focus on connected devices, Philip was a good choice for that broader topic. But the show’s hosts wanted to a deeper dive into an area where InDro’s CEO is an expert: The world of drones.

Here’s the synopsis for the episode:

“Just a few years ago drones were about hype. The reality is that this network-based tech is making a real difference in our lives today. Join hosts Carla Guzzetti and Tim Harrison as they hear from Indro Robotics CEO Philip Reece exactly how this change is happening and just when those drones will be dropping those shoes you just bought right to your door.”

Philip had an answer for that – and much more.

 

Philip Reece

It’s always great when a podcast reveals something new or unexpected. And we can tell you there were more than a few gems in this episode. But perhaps the most entertaining was when Philip explained how he switched from the world of running a seaplane airline to the world of drones (and, eventually, other robotics).

We’d love to tell you that story here, because it’s really entertaining – but we’ll let Philip tell you instead. There’s much more, of course, including a deep dive into the future of networked devices, including how aerial and ground robots will routinely be working collaboratively.

Before we get to the show, here’s a snippet that gives you an idea what to expect (and also flags that there’s cool stuff about Uncrewed Ground Vehicles, as well):

On with the show…

Okay, enough preamble. Time to hear Philip, Carla and Tim – and learn when a drone might actually deliver Carla those shoes.

Wait, there’s more!

Philip is a great and knowledgeable talker. But he’s got some competition from Kate Klassen.

Kate is widely known in Canadian circles for her contributions to both traditional aviation (she’s a multi-rated commercial pilot and instructor) as well as her immense impact on the drone world. Both Kate and Philip serve on Transport Canada’s CanaDAC Drone Advisory Committee and as board members on the Aerial Evolution Association of Canada (formerly Unmanned Systems Canada).

And Kate, who previously created and fronted a highly successful online drone course in Canada, recently outdid herself with FLYY – a brand new and fully updated set of online courses you can read about here.

FLYY is on track to become the new leader in online learning, and even includes a supportive internal social network where pros like Kate share tips with beginners on everything from safety protocols through to nailing the perfect aerial photograph. When we say it’s a comprehensive learning and resource portal, we mean it.

With a background like that, it should be no surprise that Commercial UAV News wanted to hear more from Kate about FLYY, the importance of solid training – and much more. Here she is, on the latest edition of Beyond Part 107:

If you just skipped that podcast but are considering checking out FLYY, we’d encourage you to go back.

Why? Well, let’s just say there’s a little Easter Egg (perfectly timed!) waiting somewhere in that show – a discount code for FLYY. Plus, of course, it’s likely you’re learn something from Kate.

Hope you enjoy the podcasts; both Kate and Philip are real pros.

InDro Robotics, London Drugs, pilot Roll-E robot

InDro Robotics, London Drugs, pilot Roll-E robot

By Scott Simmie, InDro Robotics

 

Meet Roll-E.

It’s a cargo-carrying Uncrewed Ground Vehicle (UGV), or robot, developed by InDro Robotics. It can be remotely teleoperated from around the corner or across the country. And it’s being put into service in a new partnership with London Drugs, helping with contactless curbside deliveries in Victoria.

We’ll explore all the relevant deets in a moment, but first – let’s take a look at this nifty and smart machine.

Delivery Robots

You’ve got to admit, that’s a pretty good-looking robot. But Roll-E is much more than that.

Built on the AgileX Scout Mini platform, Roll-E has been constructed to operate over the 5G and 4G networks. The remotely operated robot has a temperature-controlled cargo bay, GPS tracking, wireless charging – and turns on a dime. It also has front and rear cameras so that the operator can avoid any obstacles.

But what’s it doing at London Drugs? Glad you asked. Here’s the headline, from the London Drugs news release:

London Drugs Delivery

As we inexorably head into the Internet of Things universe, connected devices like Roll-E will play an ever-greater role in daily life. In this case, InDro Robotics has teamed up for an innovative pilot project at the London Drugs Harris Green Village location in Victoria, BC.

The global pandemic has changed, perhaps permanently, business and consumer practices. Online ordering and curbside pickups have grown tremendously. So we’re excited about using Roll-E to deliver secure, contactless pickup to drivers collecting goods.

And so is London Drugs:

“With the ubiquity of curbside pickup services now available, we’re constantly looking at new ways to invest and adopt cutting-edge solutions that will serve our customers in the safest, easiest and most user-friendly ways possible,” says Clint Mahlman, London Drugs president and COO. “We’re excited to pilot ROLL-E at our Harris Green Village store and further explore the full range of applications that this technology can add to our services in Victoria and at other locations throughout Western Canada.”

The UGV advantage

Though there’s a lot of potential for drone delivery (and more on this in a moment), current regulations make flying drones – particularly operating drones beyond the visual line of sight of the pilot in urban centres – difficult. The rules exist for very good reasons, including the protection of people, property and airspace.

Uncrewed Ground Vehicles are different. They operate on sidewalks or paths, not in airspace. The remote operator has a clear view of surroundings at all times, and pedestrians are given the right-of-way. InDro’s UGVs are all electrically powered, meaning zero emissions. InDro also received permission from Victoria’s municipal authorities, who are onboard with this pilot project.

This isn’t InDro’s first collaboration with London Drugs. In an earlier trial carried out in conjunction with Canada Post and Salt Spring Island’s Country Grocer, InDro demonstrated the ability to quickly and securely deliver prescription drugs to remote locations far faster than it would be possible to deliver via ground vehicles or by boat. Such aerial deliveries, especially in medical emergencies, could be life-saving. In that pilot project, drones were the appropriate tool because the locations were remote and did not involve congested urban airspace.

We’re still quite proud of that project, and you’ll see why here:

 

 

Roll-E’s a smart machine

 

Just as you can’t judge a book by its cover, you can’t judge robotic capabilities from the exterior. Roll-E contains the same brains as our proprietary InDro Commander module. This gives Roll-E the capability to eventually carry out fully autonomous missions, including mapping unfamiliar environments as it travels. Even machine learning and machine vision – where, for example, Roll-E is able to detect and act on the signals at a crosswalk – are all possible within this framework.

For now, though, Roll-E will be operated by a careful and conscientious human being working behind-the-scenes. Roll-E will be loaded inside the store for curbside delivery, then make its way to the appointed pick-up spot. It has a range of about nine kilometres on a single wireless charge, but Roll-E won’t be going far from home during this pilot project.

London Drugs has pulled together a great little Q&A, which you can find it here. If you’d like to see the entire news release, it’s here. (And if you’re really into this, you can check out CTV News coverage of the project.)

 

InDro’s Take

As an R&D company, we take considerable pride in the products we conceive, design and manufacture. It’s no different with Roll-E, which will help London Drugs customers at this particular Victoria location save time on pick-up. We also value our corporate partnerships – so we’re pleased to be taking part in this pilot project. We have a sense that for Roll-E, this is just the beginning.

“London Drugs has a track record of innovation, embracing new technologies that could help with efficiency and customer experience,” says Philip Reece, CEO of InDro Robotics. “We’ve enjoyed great success working with London Drugs and others on our drone trials delivering prescription medications to remote communities. I anticipate that someday in the future, deliveries using robots – whether by air or ground – will be routine.”

If your company might benefit from the use or robots or drones for delivery, inspection, security or data acquisition, don’t be shy. You can reach us here. (And no matter how advanced our technology gets, we’ll always ensure that a real person gets back to you.)

 

 

There’s a new robot in town: Meet LIMO

There’s a new robot in town: Meet LIMO

Even in the world of robotics, good things often come in small packages. And this is especially true when it comes to Limo, a new AgileX platform perfect for students and those carrying out R&D work. Limo is small but mighty, with the same kind of technology you’ll find in much larger devices (it weighs but 4.2 kg). The robot runs on the open source Robot Operating System (ROS) software, and comes with both the original ROS1 and ROS2 software libraries. This allows users to customize the robot for different tasks.

It ships with an impressive display of hardware and capabilities right out of the box, including:

  • An NVIDIA Jetson Nano, capable of remote teleoperation over 4G
  • An EAI X2L LiDAR unit
  • Stereo camera

This affordable machine is capable of autonomous missions, including mapping new surroundings via Simultaneous Localisation and Mapping (SLAM). It also comes with multiple modes for locomotion. You’ll see details of this in the left-hand graphic below. It’s also scalable. Want to add other sensors? There are four USB Serial Ports onboard.

This kind of flexibility in a small package is pretty amazing.

LIMO

How Limo came about

 

We were curious to learn more about Limo, so we contacted AgileX’s Brandy Xue. Until recently, Brandy was leading the company’s Global Sales and Marketing department. In March of 2022, she switched to the new AgileX subsidiary, Mammotion Tech – which focuses on consumer outdoor robots like autonomous lawnmowers.

We started with a simple question. Who would be interested in buying Limo? Would it be primarily students? Researchers? Developers?

Her answer was simple: “Limo is for everybody,” she said. She then went on to explain why.

Many students, particularly in Southeast Asia, are now delving into coding, robotics – and even AI – while in high school. It’s been a trend in South Korea, and is being seen more and more in China. In fact, says Xue, the Chinese government has been encouraging hands-on high-tech training in high school to prepare people for the workforce.

“The policies in China supporting robotics education are growing,” she says. “And in South Korea, students are working on AI and Machine Learning in high school.”

 

Not just students

 

So AgileX knew there was an educational market for a product like this. But it also felt that researchers in the R&D world could also benefit from a robot with full-scale capabilities in an affordable, smaller-scale package. Having everything integrated out of the box saves a lot of groundwork. Plus, many smaller companies don’t have the need (or the budget) for a larger machine.

“If they want to build a robot, they have to buy a robot here, a sensor there, then write the code to make it move. It’s too complicated,” she says.

“And most people don’t know what to buy, or don’t know how to write the code at the beginning. So why don’t we do this to make it easier for the developer to build a robot? It’s a really cost-effective solution.”And so they did. It also didn’t hurt that the company’s CEO, JD Wei, ran the impressive Robomaster division at DJI. Annual Robomaster competitions pit robots built by the best and brightest teams of engineers against one another. DJI has also hired a significant number of engineers through the program, which has grown since its inception to become more global in nature.

If you’re unfamiliar with Robomaster, check out the video below. It’s worth watching, as it also gives you a pretty good idea of the background JD Wei came from:

 

Simulation table

 

Because Limo is capable of autonomous movement, it can be purchased with an optional simulation table. That platform approximates a mini-city, complete with buildings, roads, stop signs, traffic lights – even a liftable gate arm, like you’d see at railroad crossings or when exiting a parking lot.

Limo can detect and act on its surroundings and can be programmed to take different actions depending on the environment. It can even use its onboard LiDAR to create a 3D, Virtual SLAM map of what it “sees” around it.

The complete package is covered in this AgileX video, which also highlights its multi-modal locomotion capabilities.

 

Powerful processor and more…

 

Limo comes equipped with enviable brains. It features the NVIDIA Jetson Nano processor for EDGE computing. The Jetson is a powerful tool for AI development, and NVIDIA’s JetPack SDK offers even more options for deep learning, computer vision and more. It’s also 4G-compatible for remote tele-operation.

InDro’s Head of Robotic solutions, Peter King, is impressed with the package – saying it offers students and developers an affordable solution for R&D and prototyping.

“Limo really fills a void in the marketplace, allowing schools, researchers, and even R&D companies with limited budgets access to a truly powerful and expandable platform,” says King.

Limo is also rugged. The body is metal, and the 4.2 kg device is capable of tackling inclines of 25°. You’ll see the rest of the specs here:

AgileX LIMO

Economical

 

Limo, as you can see, can do a lot on its own. And it’s capable of doing much more in the hands of a skilled developer or a motivated student. Given that this SLAM-capable device comes with a LiDAR unit, stereo camera, the NVIDIA Jetson Nano, and an onboard 7″ touchscreen module, you’d rightly expect it to cost a significant amount.

It doesn’t. The Limo is $2900 US in its base, multi-modal form. The simulation table, which offers a head-start for those interested in autonomous operation in a city-like environment, is available for an additional $1,000 US. If you’re interested in seeing Limo, we’re happy to arrange for a remote demonstration. You can reach us here.

 

 

InDro’s Take

 

We’ve always been impressed with the AgileX products. They’re smartly engineered and very well-constructed. Our Sentinel teleoperated inspection robot is built on the AgileX Bunker platform, capable of operating in even the most unforgiving of environments. In a word: AgileX builds great stuff. And the flexible design of its products means many are destined for even greater things.

That doesn’t surprise us, given CEO JD Wei’s background running DJI’s Robomaster program.

“After he left DJI, he founded AgileX Robotics – and he’s always joking to himself,” laughs Xue. “He used to work in a company whose robots fly in the sky. Now he runs a company whose robots run on the road.”

And, with the Limo, in classrooms and R&D labs as well.

Rogers speaks with InDro CEO Philip Reece

Rogers speaks with InDro CEO Philip Reece

By Scott Simmie, InDro Robotics

Rogers Communications, as you likely are aware, is a leading Canadian telecommunications and media company. Many of us watch television, cruise the internet, text and make phone calls using Rogers systems.

It’s also a leader in the world of 5G networks, which bring a quantum leap in wireless data transmission bandwidth. You can pump a lot of data via 5G, which opens up a lot of new opportunities for technologies like drones. For example, you could transmit crystal-clear 4K video with a drone over 5G. (We’ve already done it.)

What you might not be aware of is that InDro Robotics has partnered with Rogers on a number of projects involving flying drones over its 5G network, and transmitting real-time data back to the ground. InDro sees 5G as something of an inflection point in the world of drones and robots, paving the way for critical missions – even missions that are operated from hundreds or thousands of kilometres away.

A chat with Philip Reece

Because 5G and drones are going to be a big deal, Rogers had one of the writers from its business blog get in touch with InDro CEO Philip Reece. Specifically, they wanted to ask Philip to describe three cutting-edge uses of drone technology.

That’s a good question. And Philip was ready with some answers, which now appear on the Rogers For Business blog. Here’s a screen grab from the article:

Rogers 5G

The three examples…

It’s a good thing Philip (pictured here) was asked for only three examples, because 5G opens the door to a lot of new innovative and positive uses of drones. (InDro, if you weren’t aware, has always been interested in putting drones and robots to work doing good things.)

We don’t want to give away too much from that Rogers blog, but we will flag these three cutting-edge use-cases that Philip explores in greater detail:

  • Delivering urgent medical aid
  • Flying from public to private networks
  • Capturing critical data for First Responders

In each of the above examples, 5G plays a role in tremendously expanding the capabilities of drones. With First Responders, for example, a drone could be remotely operated over an incident by an InDro pilot – providing Responders with instant situational awareness, allowing them to focus on the task at hand instead of flying drones.

Philip Reece

Check it out…

There’s much more, of course, and Rogers captured it very well. It’s a really worthwhile read, and you can find it right here.

YOW drone detection program reveals surprising data during final days of Ottawa protests

YOW drone detection program reveals surprising data during final days of Ottawa protests

By Scott Simmie, InDro Robotics

 

Scores of drone flights took place in restricted airspace – what you might think of as a ‘No-Fly Zone’ – over Parliament Hill in Ottawa during the police operation to clear anti-vaccine mandate protests in February of 2022. While some of those flights were carried out by law enforcement, most flights were illegal and in violation of Transport Canada regulations.  

Data collected by the Ottawa International Airport Authority’s (YOW) Drone Detection Pilot Project reveals an incredible spike in flights – a total of 59 – during the days when police were actively clearing protestors from the site. 

“In an average month, you’d probably see half a dozen flights (in that same area),” says Michael Beaudette, Ottawa International Airport’s Vice President for Security, Emergency Management and Customer Transportation.  

A total of 27 different drones carried out those 59 flights over a period of four days. Of those, 25 flights exceeded 400’ above ground level (Transport Canada’s limit, except in special circumstances), with some flying more than 1500’ AGL. Eleven flights took place during hours of darkness at night – though that’s not a violation of regulations providing the drone is using lights that allow the pilot to maintain Visual Line of Sight and orientation.  

While a number of those flights were likely curious hobbyists either ignorant of or willfully ignoring regulations, it’s believed at least some were likely piloted by protestors or supporters seeking to gain intelligence of police movements. 

“The majority of those drones were not police or First Responder drones,” says Beaudette. “Some of them could have been looky-loos – just trying to see – or it could have been people wanting to know where the police were forming up.” 

Drone Detection

Drone flights, with identifying data redacted, via YOW 

 

Restricted airspace

 

The airspace above Parliament Hill (as well as 24 Sussex Drive and Rideau Hall) is restricted to all aircraft – crewed and uncrewed – unless special authorization is obtained. In terms of drones, only law enforcement or other First Responders would have legal permission to fly except in special circumstances. 

The data was obtained by Ottawa International Airport as part of a broader pilot project aimed at understanding drone traffic in proximity of the airport and developing protocols for aviation safety in the drone era. InDro Robotics is one of the partners in this project, providing key technology used in drone detection. Transport Canada regulations prohibit the operation of small RPAS within 5.6 kilometres of airports and 1.9 kilometres from helipads, except for pilots holding an advanced certification. Airspace permission is also required. (Drones weighing less than 250 grams are a different case, and we’ll touch on that shortly.)

How the drones were detected 

 

The airport uses two different types of technology for drone detection. The first is a micro-Doppler Radar in conjunction with an automated camera. The system, called Obsidian, comes from the British firm QinetiQ. Its high frequency (9-12 GHz) radar can detect the spinning of propellers on a drone anywhere within a two-kilometre range of the airport. Once detected, a camera automatically zeros in on the drone.  

You can get a good sense of how the system works via this QinetiQ video: 

The second system has been supplied for the trials free of charge by InDro Robotics. It’s capable of capturing data from drones manufactured by DJI, which account for approximately 75 per cent of all consumer drones.  

“Our system electronically ‘interrogates’ each device within its range,” explains InDro CEO Philip Reece. “We can triangulate the drone’s position – and on many models we’re able to also detect the type and serial number of the drone, its takeoff point, flight path, current GPS position and altitude. In addition, we can see where the pilot associated with that drone is located. With this data, YOW can quickly determine whether or not a given drone poses a threat to civil aviation.”

The system was intended to pick up any flights within a 15-kilometre radius of YOW. In practice, however, its range has been far greater. 

“When we turned it on, we realized our expectations were far exceeded,” says YOW’s Michael Beaudette. “We were getting hits 40 kilometres plus. It’s really done the heavy lifting for the drone detection project. You can identify where the pilot is, where the drone is, and where they are in real time within 15 or 20 seconds.” 

Data collected during the police operation to clear the protest reveals the bulk of the flights were carried out by DJI Mini 2 drones – very small machines that weigh just under 250 grams and which do not require a Transport Canada Remotely Piloted Aircraft System (RPAS) Certificate to operate. Microdrones like these are not prohibited from operation near airports or in controlled airspace if operated safely, but cannot gain access to the restricted airspace near Parliament without prior permission.

Drone Detection

A controversial catalyst

 

So. What started this project? 

The 2018 Gatwick Airport drone incident prompted many airports to take a closer look at the potential threat posed by drones. About 1000 flights were cancelled between December 19 and 21 following reports of two drones being sighted near the runway. Some 140,000 passengers were affected, with a huge economic impact. 

The incident remains controversial, because there was never any clear physical evidence that drones had indeed posed a threat. Two people were wrongfully charged, released, and later received a settlement. 

What cannot be denied, however, is that the highly disruptive incident was a massive wake-up call to airports worldwide. With an ever-growing number of drones in the air, the question of drone detection and potential mitigation became a pressing topic. If a drone detection system had been in place at Gatwick back then, it would have had concrete data as to whether there was truly a drone threat or not. 

A Blue Ribbon Task Force was launched by the Association for Uncrewed Vehicle Systems International (AUVSI) in conjunction with regulators and airport representatives. YOW President and CEO Mark Laroche was a member of the Task Force along with representatives of the Federal Aviation Administration (FAA) and NAV Canada. (Its final report can be found here.) 

Gatwick, then, was the catalyst that prompted YOW to start taking a very deep look at the issue. 

Below: Gatwick Airport. Image by Mike McBey via Wikimedia Commons

Gatwick Airport

“We wanted to be able to help shape a national drone response protocol for airports, so that we didn’t run into a situation like Gatwick, where we would have to shut down,” says Beaudette. “We didn’t even know if it’s a problem. We had to get some baseline data, some situational awareness.  So we (decided to) focus on drone detection…to identify if it was even a threat.” 

DJI, to its credit, has geofencing software that prevents its products from taking off in the immediate vicinity of major airports unless the pilot confirms on the app they have permission to do so. And while that’s useful, the geofencing is highly localized and cannot always prevent a pilot from putting a drone into the takeoff or landing path of an aircraft. 

“What causes us concern is when they’re in the flight path,” says Beaudette. 

In the fall of 2019, YOW began its pilot project. A news release made the project public in June of 2021, quoting Michael Beaudette as saying: “As an airport operator, we felt it was vitally important that we test systems to detect drones operating on flight paths, near the airport and in other restricted zones to help ensure the safety of air crews and passengers.” 

Surprising data

With the InDro and QinetiQ systems up and running, the data started coming in. It was something of a shock. 

“This opened our eyes,” says Beaudette. “We had no idea of the drone activity that was taking place.” 

There were a lot of drone flights taking place close to YOW.  

“In March of 2021, our program detected and reported on 101 drone flights within that 5.6-kilometre radius,” said CEO Mark Laroche in a news release. “April’s numbers were even higher at 167. A number of these were flown during hours of darkness and some exceeding altitudes of 1,600 feet.” 

Every month, YOW crunches the data into a comprehensive report sent to Transport Canada, NAV Canada, InDro Robotics and other stakeholders. The report from May of 2021 reveals a steep increase in the number of flights.  

Drone detection

The rapid increase was due to warmer weather and the increasing popularity of sub-250 gram drones, which are both more affordable and do not require an RPAS Certificate or registration. Here’s a breakdown of the top 30 drone models detected within a 15-kilometre radius during that same month: 

Drone Detection

The monthly report from this period states: “Detecting and identifying ‘drones of concern’ operating in the vicinity of the Ottawa Airport remains one of our primary objectives. This month, there were 19 such drones of concern within the YOW 5.6 km zone. These include drones that flew during hours of darkness, or were over 250 grams and flew over 400 ft. Of these 19 flights, there were 11 unique Drone IDs.” 

Because the system can capture drones from even farther afield, other interesting data has emerged during the course of the pilot project. 

“We started tracking other locations – Parliament Hill, Gatineau Airport,” says Beaudette. “And we were very surprised to see drones flying at all hours of the day and night and at high altitudes.” 

These weren’t just hobby flights. Unusual activity was detected around certain embassies in Ottawa, with the same drones making repeated trips. There were drones flying close to the CHEO and Civic hospital Helipads used by helicopters with the air ambulance service Ornge. There were drones apparently peering into high-rise windows, Peeping-Tom style, and others that appeared to be involved with offering intelligence to people carrying out Break & Enters. (Beaudette says police were notified in some of these instances.) 

As part of the Pilot Project, YOW worked with its partners – including NAV Canada, Transport Canada and InDro Robotics – for some real-world exercises. One such test involved determining the accuracy of the detection system. A drone was flown (with all appropriate permissions) from the E.Y. Centre, a massive exhibition/convention facility very close to the airport. When the data captured by the detection system was overlaid with the actual flight log, they were identical. Not only that, but the YOW data precisely identified the location of the pilot. 

“We could actually tell which stall in the parking lot (the pilot was standing in),” says Beaudette. 

Mitigation

 

Detection is one thing, but drone mitigation is quite something else. There are systems capable of jamming the Command and Control signal between the drone and the controller (including systems from Bravo Zulu Secure part of the InDro group of companies. Here’s a quick overview of how these systems work. 

But such systems are not in cards for YOW or other airports in Canada. Quite simply, Transport Canada and Industry Canada (which regulates radio spectrum frequencies) prohibit them in this country except in extraordinary circumstances. 

“First and foremost, a drone – like any other airplane – is considered an aircraft,” says Beaudette. “And so Transport Canada has restrictions: Nobody has the authority to interfere with the flight of that aircraft. So you won’t see airports with jammers or other kinetic solutions to that unless they have the proper authority.” 

Plus, he emphasizes, the Drone Detection Pilot Project is focused on drone detection. It’s a data-gathering exercise to help formulate protocols, provide useful information for regulators, and alert airport authorities immediately if a drone poses a threat to a flight path. YOW is not the drone police; its primary interest is in ensuring the safety of aircraft using the facility.  

“If we can detect something, we may be able to mitigate it by rerouting aircraft, delaying aircraft, or we can locate the pilot,” says Beaudette. 

Thankfully, despite many flights violating the 5.6 kilometre radius, YOW has not encountered a drone that posed a serious threat since the program began. Should that occur, it does have protocols in place to ensure civil aviation safety. Plus, of course, Transport Canada has the option of imposing heavy fines on pilots who put aircraft at risk or are flying without a Remotely Piloted Aircraft Certificate. And with the detection system in place, locating an offending pilot would not be difficult. 

Know the regs

Ultimately, the biggest piece of the puzzle is around education. Some pilots simply don’t know the rules and unwittingly violate them – an excuse that won’t help them much if facing a fine. YOW has found, for example, that pilots often fly from nearby neighborhoods or golf courses without realizing they’re impinging on that 5.6 kilometre zone.  

There’s also the issue of confusion around piloting sub-250 gram drones. Because they do not require an RPAS certificate or registration, many believe the rules somehow don’t apply to them. Yet the over-arching meaning of the regulations is clear: They must not be flown in an unsafe manner. And that includes near airports. 

“We actually had a case where we found a drone that crash-landed inside the (airport) fence,” says Beaudette. 

“We’re still the proud owners of that drone.” 

InDro’s take

Several members of the InDro Robotics team – including our CEO – have expertise as private and commercial pilots. As a result, we have perhaps a heightened awareness of the potential risk drones can cause if they’re in the wrong place at the wrong time. Drone detection at airports and other sensitive facilities is critical, and the deep data collected by YOW reflects that.

We’re proud to be part of the YOW Drone Detection Pilot Project and look forward to assisting others with drone detection and even mitigation, where appropriate. If you’re interested in exploring such a system, we’d be happy to help.