Spexi announces “Spexigon” – a global fly-to-earn platform

Spexi announces “Spexigon” – a global fly-to-earn platform

Vancouver-based Spexi Geospatial has some news – and it’s big.

The company has announced a plan, and a platform, to capture high-resolution aerial data of the earth with drones. Drone pilots will be able to fly to earn crypto currency – or even dollars.

The long-term goal? Well, picture crystal-clear data sets of cities, infrastructure, and even rural settings. With each individual pilot capturing data from different locations, Spexigon will assemble it over time to form a global jigsaw puzzle – and sell parts of that dataset to clients.

We’ll get into more details shortly, but Spexi’s plan has some strong backers – including InDro Robotics.

 

News release

 

News of Spexigon came in the form of an announcement. The company revealed it had secured $5.5 million USD in seed funding “to pursue our vision of collecting Earth’s most important data with drones.” The funding round was led by Blockchange Ventures, with other investing by InDro Robotics, Protocol Labs, Alliance DAO, FJ Labs, Dapper Labs, Vinny Lingham, Adam Jackson, and CyLon Ventures.

The same team that built Spexi – an easy-to use system for automated flight and data acquisition – is developing Spexigon. This brief video gives a “big picture” look at how it will work when it’s rolled out next year.

“Fly to earn”

 

A big part of what makes Spexigon’s plan so intriguing is what you might call incentivised crowd-sourcing. Anyone with a drone can download the forthcoming Spexigon app and fly an automated flight. The images will be uploaded to Spexigon to build the database – and the pilot will be rewarded.

“With our new Fly-to-Earn model, people who own consumer drones will be able to earn $SPEXI tokens and dollars while building a high resolution base layer of the earth,” reads the Spexigon announcement. “It is our hope that soon any organization or individual will be able to use the imagery collected by the Spexigon platform to make better decisions.”

 

Business model

 

You could think of this over time as like Google Earth, only with really sharp aerial imagery. Every time a pilot carries out a flight for Spexigon, that map will continue to fill in, building Spexigon’s database. Clients will purchase imagery online.

“This new base layer will enable governments and organizations of all sizes to make better decisions about real world assets like buildings, utilities, infrastructure, risk and natural resources, without requiring people on the ground,” continues the announcement.

“By using Spexigon, organizations that require high-resolution aerial imagery will no longer need to own their own drones or hire their own pilots. Instead, they’ll use our web and mobile app to search for and purchase imagery. Data buyers will then be able to use a variety of internal and external tools to put the imagery to use.”

 

For pilots

 

Spexigon says it will have online training when it launches. Pilots will learn how to use the app to carry out their flights – which, obviously, the pilots will monitor. Depending on the location, pilots can earn crypto currency or actual dollars. Some locations, obviously, will have greater value to Spexigon and its clients than others.

“The app will contain a map of the earth overlaid with hexagonal zones called ‘Spexigons’. Spexigons that are open and ready to fly will be easily visible so pilots can choose an area close to them and begin collecting imagery,” says the company.

“To ensure that imagery is captured in a safe, standardized, and repeatable way, our app controls each pilot’s drone automatically while they supervise the flight. Although our app will do the flying, pilots will always be in command and will have the ability to take back manual control at any time if need arises.”

Spexigon is now starting to build the app, and already has a small community emerging. You can join its Telegram channel here – and there’s also a Discord channel.

As for those ‘Spexigons’, the image below gives you an idea what those pieces of the puzzle might look like.

Spexi

InDro’s take

 

Since InDro Robotics is one of the backers of Spexigon, we obviously feel the plan is a good one.

It comes from the outstanding team that built Spexi from scratch into a user-friendly, automated system for capturing and crunching aerial data. We also believe drone pilots will embrace this unique “fly to earn” model – a global first.

“The Spexi team has already created an excellent and proven Software as a Solution product and clearly has the expertise in this space,” says InDro Robotics CEO Philip Reece. “I’m genuinely excited about the potential for Spexigon to become the ‘go-to’ database of high-quality aerial imagery from around the world.”

So are the rest of us.

Indro Robotics provides live drone video feed at Montreal Marathon in pilot medical project

Indro Robotics provides live drone video feed at Montreal Marathon in pilot medical project

By Scott Simmie

 

The Montreal Marathon, 2022 edition, was held over the weekend. The main event, the signature 42-kilometre run, took place early Sunday. And three InDro Robotics engineers were there.

They weren’t running, but were instead providing a live feed from drones. Those live feeds were being monitored on large video monitors by dedicated research assistants. They were assessing the quality of the feeds and their usefulness in detecting runners who might be in need of medical assistance.

Below: Team InDro, wearing safety vests, with Montreal Marathon runners on the right

Montreal Marathon

Research project

 

InDro became involved with this through Dr. Valérie Homier, an Emergency Physician at McGill University Health Centre. She has long had an interest in how drones can be used in the health care sector, and has collaborated with InDro on two previous research projects.

One of those projects evaluated whether drones or ground delivery could transport simulated blood products more efficiently to a trauma facility – the Montreal General Hospital. Drones were faster.

The second project studied whether drones could help identify swimmers in distress at an IRONMAN event in Mont-Tremblant. You can find that research here.

With the Montreal Marathon coming up, Dr. Homier knew there would likely be medical events. There generally are.

“In these long-distance sporting events there are usually some significant injuries, including cardiac events and heat strokes,” she says.

These tend to be more likely in the later phases of events like marathons, after the athlete has already been under stress for an extended time. The thinking was that perhaps drones could be a useful tool.

Dr. Homier was particularly interested in whether two drones in the air, covering two critical segments toward the end of the marathon, could provide useful data. Specifically, would the live video feed be consistent enough in quality and resolution to be a useful tool?

This pilot aimed to find out.

Below: An uphill segment near the Montreal Marathon finish line. This is was the target area for one of the Indro Robotics drones 

 

Montreal Marathon

InDro’s role

 

There was a lot of planning required for the mission to ensure the drones could provide continuous coverage and be safe for flying in an area with so many people. Project Manager Irina Saczuk (who happens to also be an RN) worked closely with Dr. Homier to help figure out the nuts and bolts of the InDro side of things.

InDro assigned three employees from the Area X.O facility to the project: Software developers Ella Hayashi and Kaiwen Xu, along with mechatronics specialist Liam Dwyer. All three hold Advanced RPAS certificates and took part in planning meetings to understand the mission and their roles. They also looked into optimising the drones’ video feeds to ensure the best quality would reach those monitoring remotely on large screens.

“At big-scale events such as this marathon, lots of people could go down with injuries,” says InDro’s Ella Hayashi. “But it can be hard to get timely support because roads are blocked. So drones have the potential to really help with sharing the precise location and other information when a person may need help.”

Worth noting here: The InDro engineers/pilots were not to be actively ‘looking’ for people in medical distress. Their role was simply to pilot the drones at the assigned locations and maintain a video feed that offered those watching the large-screen monitors with good situational awareness. In the event of an emergency, the pilots were to follow instructions, including moving in closer to a runner in distress.

 

Sub-250 grams

 

The team took four DJI Mini 2 drones to Montreal. Though InDro has a fleet of much larger and sophisticated drones the company has built, these consumer drones were perfect for the job. That’s because the Mini 2 is a sub-250 gram drone that can be flown near and over people. In the exceedingly rare event of a failure, the small device is unlikely to cause any substantial injury to someone on the ground. They’re also capable of very good video quality.

The team also used a third-party app – Airdata – to carry the video streams. The app created secure links for each drone’s feed that could be shared with those who would be monitoring the feed. Three drones were to be used in rotation so that two drones were always in the air providing live video at any given time. A fourth drone was onsite for backup.

“We modified the parameters and were streaming in 720p,” explains Dwyer. “We selected a lower resolution because on the bigger screen it didn’t have to be crystal clear but it needed to be smooth.”

There was, initially, some concern over whether the local LTE network would be able to handle the feed due to the large number of people using cellphones to capture and stream from the finish line.

“The night before the mission, a medical person told us there were going to be 20,000 people around the stadium,” says Xu. “We were worried about network connectivity, it was possible that our video streaming would not work. But actually the network was pretty good that day.”

Below is a drone selfie of the InDro team: From left to right, Kaiwen Xu, Ella Hayashi, Liam Dwyer

 

Live Drone Video Feed

A useful exercise

 

Remember: This was simply a pilot project to determine if drones could provide a clean video stream that might be useful. The pilots were to focus on hovering the drones in two specific adjacent locations, with some overlap in their video to ensure they were not missing a spot of this critical part of the marathon.

“Our job was 100 per cent flying the drones,” says Dwyer. “Just straightforward, wide-angle shots with all runners in the field of view.”

We should mention here that InDro also took part in a simulated cardiac event prior to the marathon reaching this area. A medical dummy was placed in a location and one of the drone pilots was instructed to get closer for a better look. A small electric vehicle – think a large golf cart adapted for First Responder use – was dispatched. Chest compressions were performed on the dummy, which was then loaded into the vehicle. A drone followed as the vehicle drove to a nearby stadium and the victim was transported inside to the treatment area. The feed gave others on the Medi-Drone team an opportunity to see, in real-time, the progress of the patient’s arrival.

“The drone response really gave them an active timeline of when they should expect to receive this patient,” says Dwyer.

So the drones proved useful during a simulation. But how would they perform with runners during the actual marathon?

Below: The downhill segment monitored by InDro Robotics

Montreal Marathon Drone Video

From simulation to real-world

 

As the lead runners came in, the field wasn’t crowded. But, of course, it would become more congested.

When athletes are moving together en masse like this, Dr. Homier says there’s a certain flow that can be observed from the drone. Because that flow is consistent and smooth, a runner in distress literally pops up as looking out of place.

And it happened. Those watching the live feed spotted someone who appeared to be in distress. They had stopped, were hanging on to a railing on the side of the course. Then they fell over the railing, dropping to the grass. A drone pilot was asked to move in for a closer look. It was clear this runner needed help.

In fact, while the pilots were intended to simply hover their drones, Dr. Homier had anticipated such a scenario, and built it into the protocol for the pilot project. Suddenly, an InDro pilot had become part of a First Responder team, providing much-needed situational awareness.

“It was embedded in the research protocol, that eyes on the event becomes what is required,” she explains. “It was called into dispatch and pilots were able to provide eyes on the incident. That was amazing; dispatch came down after and brought us a radio.”

 

Lessons learned

 

For Dr. Homier, there’s still work ahead and a lot of data to be analyzed.

“There’s a lot to learn from this project, and there’s a way forward for multiple surveillance methods,” she says.  “And the drones are way up there. The view from above when monitoring moving crowds is just incomparable.”

Plus, says Dr. Homier, the project sparked a tremendous amount of interest from other healthcare professionals on site.

“The interest was incredible, coming from the drone pilots, the students, the medical directors, the medical staff – they all thought it was so cool,” she says.

“We’re talking about 250 people involved in the medical team. Many came to see the viewing station, so in terms of letting people know about this new use of the technology – that was also a great success.”

Below: Mission accomplished! Team InDro is joined by key members of the marathon’s medical response team for this post-race drone selfie

Montreal Marathon

InDro’s take

 

We’re proud to be involved with this project – just as we’re proud to have collaborated previously with Dr. Valérie Homier on other research projects involving drones. In fact, we find this kind of research particularly meaningful.

“For us, using drones for good is much more than a catchy hashtag,” says InDro Robotics CEO Philip Reece. “Aerial and ground robots can perform so many useful tasks. We’ve helped securely deliver prescriptions to remote locations, COVID test supplies, and more. But playing a role in helping to ensure that someone in medical distress receives timely assistance is up near the top of the list. We look forward to the next project with Dr. Homier.”

And nice job, Ella, Kaiwen and Liam.

PS: We’ve issued a news release about this project. You can read it here.

 

 

InDro’s ROLL-E 2.0 robot delivers to London Drugs customers in Surrey, BC

InDro’s ROLL-E 2.0 robot delivers to London Drugs customers in Surrey, BC

There’s a new robot in town.

That robot is InDro’s ROLL-E 2.0, and the town (well, city) is Surrey BC.

In the latest phase of an ongoing pilot project with London Drugs, the new version of InDro’s delivery robot was on the job September 9, delivering curbside orders to customers for touchless and convenient delivery. ROLL-E even delivered from the store to a customer’s home.

Let’s take a look at this robot, which features a number of innovations its predecessor, the original ROLL-E, did not have.

Delivery Robot

A leap from ROLL-E 1.0

 

You might recall that Indro Robotics carried out a longer-term pilot project at a location of London Drugs in Victoria, BC. The robot carried out regular curbside deliveries for customers who ordered online and wanted a touchless pickup experience.

The original ROLL-E worked great, but we learned some lessons that have resulted in an even more user-friendly robot. As a result, ROLL-E 2.0 features a host of new features, including:

  • A total of six cameras, including two sets of depth perception cameras at the front and rear for greater situational awareness for the operator
  • LED running lights, signal lights, brake lights
  • Large cargo bay (50kg capacity) that can be opened and closed remotely
  • Greater all-weather protection and a touchscreen interface for customers

Here’s a quick look at ROLL-E 2.0 on the job:

Tele-operated

 

ROLL-E 2.0 is a tele-operated robot, with an operator controlling it over the 4G or 5G cellular networks. That means the ‘driver’ could be in the local London Drugs outlet, or even hundreds of kilometres away. The person operating sees the view from all cameras, GPS location, ROLL-E health – and more – over a computer console. ROLL-E 2.0 is not yet a fully autonomous machine, but does have the capability to eventually be thinking on its own.

The first deployment – for curbside pickups in Victoria – was popular with customers and London Drugs staff. Pushing the envelope with home deliveries was the next logical step.

“Customers were pleased with both the convenience and experience of having goods delivered to their car by robot,” says InDro Robotics CEO Philip Reece. “This took things further, both literally and figuratively. Delivery robots will one day become commonplace, so London Drugs and the City of Surrey are really ahead of the game.”

London Drugs, meanwhile, is interested in continuing to assess the efficiency and customer acceptance of robot deliveries as part of the future of e-commerce.

“Following a successful pilot debut for ROLL-E earlier this year, we are thrilled to be further exploring its capabilities as we test home delivery in conjunction with Indro Robotics and the City of Surrey,” says Nick Curalli, London Drugs vice president of technology solutions. “This is an important step for our company as we look for innovative ways to serve our customers in the safest and most convenient way.”

By the way, that’s InDro’s Kate Klassen on the left in the photo below. She was ROLL-E’s operator for this project. 

 

Delivery Robot

The Surrey connection

 

Surrey was an ideal test bed. The city welcomes projects like this as part of its Urban Technology Test Lab, which accelerates innovative projects toward commercialisation.

“Responding to the need for technology testing areas, the Urban Technology Test Lab Pilot provides technology firms with access to safe, local test zones,” said Surrey Mayor Doug McCallum. “Without the opportunity to field test in a real-world setting, many of the products could not proceed to final development and commercialisation. I am thrilled to see ‘ROLL-E 2.0’ hit Surrey streets for testing, and I am excited to see this initiative launch. The future truly does live here in the City of Surrey.”

ROLL-E 2.0 Surrey

InDro’s take

 

As an R&D company, InDro has always taken a “Crawl, walk, run” approach when it comes to testing new technology. The initial deployment in Victoria with ROLL-E 1.0 was the crawl phase, putting the product through its paces in a real-world setting. ROLL-E 2.0’s development and testing in Surrey was the our first chance to walk; we’ll soon be ready to run.

For InDro Robotics, this is about more than a business case. The eventual widespread adoption of robots like these will end countless short trips by automobile to nearby stores for small orders.

“Because ROLL-E 2.0 is electric, these deliveries will eliminate carbon emissions that would have otherwise been created by people driving to the store and back,” says InDro CEO Philip Reece. “This project involves a single robot, but deploying these at scale in the future will have a measurable impact on C02.”

We’ll check in again when ROLL-E 2.0 starts running.

Methane detection via drone with Aerometrix

Methane detection via drone with Aerometrix

By Scott Simmie

 

There’s no denying climate change. Whether it’s the recent and devastating floods in Pakistan, fires in Portugal – or the multiple rivers globally that have dropped to historically low levels – the planet’s equilibrium has been changing.

While carbon dioxide emissions get much of the press, methane is one of the most potent contributors to the problem of greenhouse gases.

“Methane has more than 80 times the warming power of carbon dioxide over the first 20 years after it reaches the atmosphere,” states the Environmental Defense Fund.

“Even though CO2 has a longer-lasting effect, methane sets the pace for warming in the near term.”

That’s a key reason why the detection of methane emissions has become a priority. It’s also a large part of why Aerometrix – a company specialising in methane detection using drones – was formed.

Below: One of the early Aerometrix rigs for methane detection. The sensor is at the forward end of the counter-weighted rod to keep it clear of prop wash.

Aerometrix

Aerometrix

 

Before we get more into what Aerometrix does (and how it does it), we should point out there’s an InDro Robotics connection here. InDro CEO Philip Reece, along with Michael Whiticar, founded the company. Aerial operations for Aerometrix are carried out by InDro Robotics.

“We felt there was a void in the marketplace for the detection of methane and other gases,” explains Reece. “We also wanted to approach this from an engineering-first perspective, ensuring that we were using, and even developing, the best available sensors and workflow.”

Aerometrix uses two different types of sensors for methane detection. The first is the proprietary GasMap sensor, which is capable of detecting methane in parts per billion (ppb). This laser-based sensor had its origins at NASA’s Jet Propulsion Laboratory, where it was developed for Mars missions. Aerometrix has further refined that sensor and has used it to accurately map methane emissions at petrochemical plants, gas wells, landfills – and even on agricultural sites. (Animals, particularly cows, are a significant methane source.)

“GasMap uses laser spectroscopy,” explains Peter Sherk, an electronics engineer with Aerometrix. “It uses the absorption of lasers by methane to detect concentration. And it’s very precise – detecting not only its presence, but how much there is at a given point in time and space right down to parts per billion.”

The sensor maps methane (and other gases) by flying horizontally through the plume. When multiple passes at different altitudes have been completed, a “curtain” is obtained. (Don’t worry, we won’t ask you to carry out the calculation – besides, our FluxCurtain software does that.)

Flux Curtain

Zig-zag

 

As mentioned, the drone flies horizontally through the plume – with each parallel flight at a slightly higher altitude. The sensor is constantly capturing georeferenced data which Aerometrix then runs through software.

In the images below, you’ll see that zig-zag flight pattern. The blue lines at the bottom indicate methane concentrations. Not surprisingly, those concentrations begin to dissipate at higher altitudes as the methane plume mixes with the surrounding air.

The second image is what’s referred to as the actual “Flux Plane” – where the methane concentrations are represented visually by colour.

Methane Detection
Methane Detection

Efficiency

 

Though pipelines and facilities that handle methane are obvious places where detection is required, local city dumps are also interested in detecting – and even capturing – methane produced by buried garbage. But many are unaware of the efficiency and accuracy of using sensors like the GasMap mounted on a drone.

“A lot of landfills are doing methane detection already,” says Sherk, “but they’re using far less convenient methods. A lot of the time there’s someone walking back and forth with handheld sensors. With larger landfills any sort of grid pattern will take days and days – and walking over an old landfill can’t be a really healthy operation.Operating a drone is vastly more efficient. And the GasMap sensor is capable of detecting not only the presence of methane, but its concentration at various altitudes as the gas forms a plume and mixes with surrounding air.

Some landfills have been able to not only capture but exploit methane that was previously escaping. The Capital Regional District on southern Vancouver Island has been running a power generating plant on-site at the Hartland Landfill, fuelled solely by captured methane produced by decomposing garbage. It’s been doing so since 2004, creating enough energy to power 1,600 homes.

Recently, the volume of methane produced by the landfill has increased, and the power plant is nearing the end of its operational life. In 2023, the landfill will switch gears and process the biogas into natural gas – selling the product to FORTIS BC.

Kudos to the Capital Region District for having such foresight; the example also highlights how captured methane can be put to positive use.

Aerometrix has carried out surveys now at numerous landfills hoping to capture or otherwise mitigate methane emissions. Using FluxCurtain software, its reports turn what was previously an invisible problem into clear, actionable data that provide a clear picture of emissions and concentrations.

Methane Detection

Another sensor

 

We mentioned a second sensor also being used by Aerometrix. It’s called the LaserScan, and it’s a very lightweight sensor that also uses laser spectroscopy to detect the presence of methane.

Unlike the GasMap, the newer sensor is able to measure vertically. In other words, the drone can be flying directly above a plume and take a measurement straight down to the ground. While it’s not quite as precise as the GasMap sensor (parts per million, rather than parts per billion), the LaserScan does have an advantage when it comes to speed.

Because it does not rely on flying through the plume, the LaserScan is ideal for detecting emissions over large areas. By simply flying a grid pattern at a single altitude, it can rapidly identify emissions. At an altitude of 98.4′, it’s capable of detecting 500 ppm of methane with a plume diameter of one meter.

“While the Falcon is less precise than the GasMap sensor, it has a definite advantage when it comes to speed,” explains Keegan Richter, a mechanical engineer with Aerometrix.

In cases where greater precision is required, Aerometrix can fly two missions: The first with the LaserScan to rapidly detect the location of emissions – particularly over large landfills – followed by GasMap for parts-per-billion accuracy.

Methane Detection

InDro’s Take

 

We obviously have a special interest in Aerometrix, since InDro’s pilots and drones carry out its aerial missions.

Not surprisingly, since CEO Philip Reece is a co-founder, the mission of Aerometrix closely aligns with InDro’s guiding philosophy: Developing and utilising technology to increase efficiency and – whenever possible – contribute to positive change.

Arguably, the dramatic and apparently escalating shifts we’ve seen to global climate patterns are one of the most pressing problems on the planet. Methane is a key contributor to those changes.

The ability of Aerometrix to accurately detect methane emissions has already helped clients cap leaks and examine other methods for capturing this gas before it hits the atmosphere. Its missions have also meant that human beings are no longer exposed to hazardous environments while capturing data using handheld devices.

In our mind, those are both positive outcomes.

Interested in more information? You can contact Aerometrix directly here.

Putting Sentinel through its paces at EPRI

Putting Sentinel through its paces at EPRI

By Scott Simmie

 

There’s testing. And then there’s “real-world” testing.

For example, InDro Robotics builds and tests drones and ground robots. We do this constantly, pushing for continuous improvements (and even breakthroughs) with our products. In BC, we’re frequently flying missions to test cellular connectivity or our new proprietary drone software, InDro Pilot.

At Area X.O in Ottawa, we routinely deploy our ground robots on missions to test tele-operations, new sensors, and even autonomous functions. (We have a real advantage here, because Area X.O is made for robots. There are several roads – and even traffic lights – designated for testing and use by autonomous vehicles.)

And while such research always provides us with useful data, it’s just not the same as putting technology to the test in a real-world environment.

That’s why we took Sentinel – our custom-built robot for monitoring and inspection at remote facilities – to Massachusetts.

 

Autonomous Robots

The EPRI challenge

 

EPRI stands for the Electric Power Research Institute. It’s a non-profit energy research, development and deployment organisation. EPRI is constantly doing research – collaborating with more than 450 private companies across 45 countries globally. The purpose, according to its website, is to “ensure the public has clean, safe, reliable, affordable, and equitable access to electricity across the globe.” EPRI shares its research with members, which represent virtually all facets of the power generation and delivery sector.

EPRI has multiple research facilities, including one in Lenox, Massachusetts. This particular location features an electrical substation that can be energised, de-energised – and can even simulate rain for testing purposes.

Earlier this year, InDro Robotics was one of a small number of companies to participate in research to analyse the effectiveness of remotely-operated and autonomous ground robots in a variety of conditions. The purpose was to determine the ability of such devices to carry out inspection and monitoring – including whether these robots could detect problems such as arcing.

InDro Robotics Sentinel

The InDro Team

 

We dispatched InDro Account Executive Luke Corbeth and Robotics Engineer Austin Greisman (along with Sentinel, of course) to the EPRI facility in Lenox, Massachusetts.

“EPRI’s goal for this program was to evaluate technologies that are capable of 24/7 autonomous substation inspection and security monitoring,” explains Corbeth. “This put Sentinel in a real substation environment, to conduct inspections and security patrols amidst powerful electrical currents.”

In fact, there was a series of specific tests during the week-long demonstration. These included all permutations of the following:

  • With the substation energised and de-energised
  • With simulated rain and without rain
  • During daylight and at night

That makes for eight separate missions carried out in different conditions – including an energised substation with simulated rain during nighttime, and a de-energised substation on a clear day.

In addition, each of the above eight missions was carried out both via remote teleoperations – and also autonomously. Factor that in, and there were 16 separate challenges.

And that’s not all. EPRI engineers carried out their own tests on Sentinel, seeing how well it handled inclines, manoeuvres through mud, what weight it could carry at what speeds, and battery life. On these tests, Sentinel performed very well.

“Once we were on site, the value that Sentinel brings to utilities became very apparent – especially identifying thermal signatures to identify (overheating) components onsite or intruders trying to break in,” says Corbeth.

“The performance at night and during simulated rain tests was very successful. They actually have hoses that go overhead and can blast the site with water.”

FYI, the image below is a screenshot from the secure, browser-based controller for Sentinel. The operator can see all key parameters, control propulsion and camera systems, in real-time.

EPRI

Lessons learned

 

At the outset, we told you this was very much a real-world test for Sentinel. If this article were simply a piece of marketing, we’d tell you that everything went perfectly. But it didn’t, and there were lessons learned.

For one thing, we discovered that Sentinel’s track-based locomotion – though ideal in numerous demanding terrains – fell somewhat short in the heavy gravel bed of this substation. Pieces of gravel got caught in the tracks from time to time. As a result, we’re now building a rugged wheel-based variant of Sentinel specifically for this kind of surface (though the tracked version will still be available).

We also faced some challenges with autonomous missions. For one thing, at the time of testing Sentinel did not yet have an optical-based docking system for wireless re-charging (it does now). We also originally thought that a GPS-based guidance system would work in this environment. And while it did, we soon realized that SLAM (Simultaneous Localisation And Mapping) would be a better option. That feature will be integrated into Sentinels going forward.

“The opportunity to get onsite enabled us to test our autonomy package and understand what it’s good at, as well as what needs to be improved,” says Corbeth. “We believe we’re well on our way to a complete, 24/7 autonomous solution. I’d say we’re 85 per cent of the way there. This is new technology” 

InDro Engineer Austin Greisman on-site in Lenox with Sentinel

InDro Robotics Sentinel

InDro’s Take

 

Research and development, as we often say, is at the very core of InDro Robotics.  And a big part of R&D is testing outside of the confines of the lab.

And while we were very pleased with many aspects of Sentinel’s performance in the field, we also identified areas where there was room for improvement. Sentinel is now capable of fully autonomous docking to its wireless charging station, and we’re well along the path with fine-tuning SLAM on this device.

Full autonomy, as many of you know, is a difficult challenge. Whether it’s ground robots or drones, InDro has always taken a “Crawl, Walk, Run” approach. Sentinel is now hitting its stride with walking – and getting ready to run.

InDro Robotics partners with UBC, Rogers, Honeywell on 5G UAV project

InDro Robotics partners with UBC, Rogers, Honeywell on 5G UAV project

By Scott Simmie

 

Picture a small fleet of drones, flying over an urban centre. They are connected to pilot-observers – and each other – over a 5G network.

Some are carrying critical documents, others prescription medication. The UAVs are flying autonomously, able to avoid any conflicts both with each other and with traditional crewed aviation. One of the drones is powered by a hydrogen fuel cell.

The energy requirements of each flight – factoring in payload, weather and distance were calculated prior to takeoff. The financial cost of each flight is also known, valuable data as companies weigh the business case of drones versus more traditional deliveries.

Sounds valuable to us. And that’s one of the reasons InDro Robotics is part of an ambitious research project, in conjunction with corporate and academic partners, at the University of British Columbia.

Drones Canada

Collaboration

 

If you’ve been following the work of InDro Robotics, you’ll know that collaboration is a big part of what the company is about.

InDro has partnered with such companies and organisations as NASA, the Canadian Space Agency, Ericsson, the National Research Council – and many others. (If you’re interested in seeing some of our other partnerships, check out the bottom of this page.)

We’re now pleased to announce our latest collaboration: A major project involving the University of British Columbia, Rogers, Honeywell and more.

It’s called the UBC Mini Cities Research project. And it has ambitious goals.

Below: UBC Campus. Photo by Martin Dee / UBC Brand & Marketing

 

Canada Robotics

Mini-Cities

 

Let’s start by taking a look at what the term “Mini-Cities” actually means. For that, we contacted Omar Herrera, Senior Program Manager at UBC.

“UBC is just like a small city,” he says. “It has its own population, its own services, streets, garbage disposal – so it’s like a mini-city, in a way. One of the things we’re interested in with this project is how can we really deploy UAVs in the cities.”

So you can think of the UBC Campus, which is also serviced by a Rogers 5G corridor, as kind of a test-bed to prove the safety, viability and economics of drone deliveries in a major urban centre. What weights and sizes of packages can be delivered and over what range? How many drones can be operated autonomously at a single time over the network? Does 5G connectivity vary with altitude? Can an Unmanned Traffic Management system – to minimise the potential for conflict with low-flying traditional aircraft – be successfully deployed and demonstrated in a mini-city? Can AI use data from previous flights to accurately predict energy demands for future missions? How efficient (and cost-effective) is a hydrogen fuel cell drone when compared with one powered by lithium-polymer batteries?

These are all questions – and there are more – that the project will be answering.

If that sounds like a major task, it is. In fact, InDro has relocated mechanical engineer Keegan Richter from our Vancouver bureau to a lab office at UBC – allowing Richter to work directly with the UBC team and MéridaLabs.

Richter is now InDro’s “traveling scientist,” working on the UBC campus three days a week, connecting with broader engineering departments.” That’s Richter below, on the UBC campus.

 

5G UAV

 

“I’m really excited to be working with the MéridaLabs team,” he says. “They’re truly reimagining clean technology.”

Richter is acting as the technical lead for InDro’s proprietary hardware and software (Wayfinder and InDroPilot), serving as liaison between InDro Robotics and other partners, and assisting with project management.

The InDro robotics Wayfinder drone will be flown over 5G using InDroPilot for the first phases of the project. Rogers has supplied a CradlePoint router which will measure and log 5G signal strength along the flight corridor – including at various altitudes. Heat maps created with this data will be used to optimize future flight planning.

“We want to assess the capacity of InDro’s Wayfinder to deliver packages,” explains Richter. “Demonstrating how much, how fast, and how far we can carry essential goods are questions of particular interest to the team.”

A Masters student, working within MéridaLabs, will be crunching the data for energy demands and costs. The goal is to build an AI model that can quickly determine energy needs and ranges for future planned missions. This software could prove to be of great assistance to other UAV companies hoping to conduct deliveries at scale.

Canada Drones

UBC’s Interest

 

Omar Herrera also has a technical background. He’s a chemical engineer with a PhD in mechanical engineering. He explains that a major project about energy was already underway and that this seemed a logical next step.

“The reason why this all came to be is because we (MéridaLabs) had a project with the University – a large test bed – combining different kinds of energy sources into energy storage. Moving that energy is what really drives us, and our research is related to that.

“One of the visions we have is that transportation doesn’t have to be limited to manned vehicles. And that’s how we got connected with InDro Robotics.”

The project will also capture data to help determine how many drones could potentially be operating simultaneously (and autonomously) in a 5G environment.

“We’re going to look at a few things, including the implications of antennae. Let’s say we have hundreds of drones (in flight) with hundreds of signals underneath. With drones flying autonomously, what would be the threshold for the number of drones that can fly safely (over 5G)?

It’s a good question. And while the project will at one stage involve multiple drones flying simultaneously – there won’t be a real-world test involving hundreds. But Herrera says software developed for the project will be able to predict, based on a small number of drones, what is likely to happen with many more in the air.

You’ll recall Herrera mentioned MéridaLabs is deeply involved with energy and energy storage. This video (which includes drones!) provides a good overview.

InDro’s Take

 

UBC was North America’s first 5G campus, and this isn’t InDro’s first involvement with the institution. It is, however, the most ambitious.

“This project should produce excellent data – along with further solutions – to enable safe and autonomous BVLOS drone missions and deliveries over 5G,” says InDro Robotics CEO Philip Reece. “We believe the results will be useful not only to project participants, but to the RPAS industry as a whole.

“A world where drones and ground robots carry out important tasks at scale, utilising the bandwidth and power of high-speed networks, is coming. I believe this research is an important part of the way forward.”

Stay tuned. This is a long-term project. But we’ll keep you up to date as we hit milestones along the way.