There’s a new robot in town: Meet LIMO

There’s a new robot in town: Meet LIMO

Even in the world of robotics, good things often come in small packages. And this is especially true when it comes to Limo, a new AgileX platform perfect for students and those carrying out R&D work. Limo is small but mighty, with the same kind of technology you’ll find in much larger devices (it weighs but 4.2 kg). The robot runs on the open source Robot Operating System (ROS) software, and comes with both the original ROS1 and ROS2 software libraries. This allows users to customize the robot for different tasks.

It ships with an impressive display of hardware and capabilities right out of the box, including:

  • An NVIDIA Jetson Nano, capable of remote teleoperation over 4G
  • An EAI X2L LiDAR unit
  • Stereo camera

This affordable machine is capable of autonomous missions, including mapping new surroundings via Simultaneous Localisation and Mapping (SLAM). It also comes with multiple modes for locomotion. You’ll see details of this in the left-hand graphic below. It’s also scalable. Want to add other sensors? There are four USB Serial Ports onboard.

This kind of flexibility in a small package is pretty amazing.


How Limo came about


We were curious to learn more about Limo, so we contacted AgileX’s Brandy Xue. Until recently, Brandy was leading the company’s Global Sales and Marketing department. In March of 2022, she switched to the new AgileX subsidiary, Mammotion Tech – which focuses on consumer outdoor robots like autonomous lawnmowers.

We started with a simple question. Who would be interested in buying Limo? Would it be primarily students? Researchers? Developers?

Her answer was simple: “Limo is for everybody,” she said. She then went on to explain why.

Many students, particularly in Southeast Asia, are now delving into coding, robotics – and even AI – while in high school. It’s been a trend in South Korea, and is being seen more and more in China. In fact, says Xue, the Chinese government has been encouraging hands-on high-tech training in high school to prepare people for the workforce.

“The policies in China supporting robotics education are growing,” she says. “And in South Korea, students are working on AI and Machine Learning in high school.”


Not just students


So AgileX knew there was an educational market for a product like this. But it also felt that researchers in the R&D world could also benefit from a robot with full-scale capabilities in an affordable, smaller-scale package. Having everything integrated out of the box saves a lot of groundwork. Plus, many smaller companies don’t have the need (or the budget) for a larger machine.

“If they want to build a robot, they have to buy a robot here, a sensor there, then write the code to make it move. It’s too complicated,” she says.

“And most people don’t know what to buy, or don’t know how to write the code at the beginning. So why don’t we do this to make it easier for the developer to build a robot? It’s a really cost-effective solution.”And so they did. It also didn’t hurt that the company’s CEO, JD Wei, ran the impressive Robomaster division at DJI. Annual Robomaster competitions pit robots built by the best and brightest teams of engineers against one another. DJI has also hired a significant number of engineers through the program, which has grown since its inception to become more global in nature.

If you’re unfamiliar with Robomaster, check out the video below. It’s worth watching, as it also gives you a pretty good idea of the background JD Wei came from:


Simulation table


Because Limo is capable of autonomous movement, it can be purchased with an optional simulation table. That platform approximates a mini-city, complete with buildings, roads, stop signs, traffic lights – even a liftable gate arm, like you’d see at railroad crossings or when exiting a parking lot.

Limo can detect and act on its surroundings and can be programmed to take different actions depending on the environment. It can even use its onboard LiDAR to create a 3D, Virtual SLAM map of what it “sees” around it.

The complete package is covered in this AgileX video, which also highlights its multi-modal locomotion capabilities.


Powerful processor and more…


Limo comes equipped with enviable brains. It features the NVIDIA Jetson Nano processor for EDGE computing. The Jetson is a powerful tool for AI development, and NVIDIA’s JetPack SDK offers even more options for deep learning, computer vision and more. It’s also 4G-compatible for remote tele-operation.

InDro’s Head of Robotic solutions, Peter King, is impressed with the package – saying it offers students and developers an affordable solution for R&D and prototyping.

“Limo really fills a void in the marketplace, allowing schools, researchers, and even R&D companies with limited budgets access to a truly powerful and expandable platform,” says King.

Limo is also rugged. The body is metal, and the 4.2 kg device is capable of tackling inclines of 25°. You’ll see the rest of the specs here:




Limo, as you can see, can do a lot on its own. And it’s capable of doing much more in the hands of a skilled developer or a motivated student. Given that this SLAM-capable device comes with a LiDAR unit, stereo camera, the NVIDIA Jetson Nano, and an onboard 7″ touchscreen module, you’d rightly expect it to cost a significant amount.

It doesn’t. The Limo is $2900 US in its base, multi-modal form. The simulation table, which offers a head-start for those interested in autonomous operation in a city-like environment, is available for an additional $1,000 US. If you’re interested in seeing Limo, we’re happy to arrange for a remote demonstration. You can reach us here.



InDro’s Take


We’ve always been impressed with the AgileX products. They’re smartly engineered and very well-constructed. Our Sentinel teleoperated inspection robot is built on the AgileX Bunker platform, capable of operating in even the most unforgiving of environments. In a word: AgileX builds great stuff. And the flexible design of its products means many are destined for even greater things.

That doesn’t surprise us, given CEO JD Wei’s background running DJI’s Robomaster program.

“After he left DJI, he founded AgileX Robotics – and he’s always joking to himself,” laughs Xue. “He used to work in a company whose robots fly in the sky. Now he runs a company whose robots run on the road.”

And, with the Limo, in classrooms and R&D labs as well.

Voliro brings a new solution to an old inspection problem with aerial Non-Destructive Testing

Voliro brings a new solution to an old inspection problem with aerial Non-Destructive Testing

By Scott Simmie, InDro Robotics

Imagine, for a second, you’re an engineer responsible for the integrity of an aging water tower. The steel structure is elevated about 10 metres off the ground and is spherical in shape.

From your vantage point on the ground, it appears to be okay. There’s no visible rust, but you’re concerned there could be corrosion beneath the paint.

What are your options? Well, you could send someone up to inspect it visually. Or, better yet, have them take a specialized tool that can precisely measure the thickness of that metal or even the paint or coating on the surface – simply by touching it.

This is known as Non-Destructive Testing, or NDT. In the photo you’re about to see, there’s a ladder leading to a lower-level catwalk. This provides some access for an inspector – but only allows them to examine a fraction of the entire structure.

In order to make a complete inspection you’ll need to look at other options. Will you build scaffolding beneath and surrounding the structure so the worker has a safe platform from which to carry out the measurements? Will you rig them with a safety harness and ropes and lower them from the top of the tank? Might you have them attach the sensor to a super-long stick?

None of these choices are optimal, and the first two involve varying degrees of risk (falls from height are one of the leading causes of death or disability in the workplace). You’ll also have to ensure you’re fully compliant with a host of worker safety regulations – all of which exist for very good reasons. Plus, scaffolding is an expensive proposition and will require about a week for a contractor to put up and then disassemble. And sticks or poles? Well, the longer the reach the more cumbersome and awkward the task.

Take a really good look at the image below. How would you solve the problem? How would you deploy resources in order to get measurements from anywhere on the water tower’s surface? And what about that black semi-sphere at the bottom? Tricky.

Of course, you’d face the same issue if you wanted to spray-paint or apply some other coating to the surface. In fact, it’s the latter issue that the engineers who developed this product initially set out to solve.

(Photo by TheTechnician27, via Wikimedia Commons)


A Swiss solution

Back in 2016, engineering students Timo Müller and Mina Kamel set out to design a drone that could do that kind of work – spraying paint or coatings. They were at Switzerland’s Zürich ETH, a research university that has been a catalyst for a number of successful technology startups.

Working in the ETH Lab, they started from scratch on the project. But as it evolved, they realized there was an even greater need for a drone that could carry out Non-Destructive Testing, which requires that the sensor attached to the flying robot physically touch the surface of the asset being inspected. That asset might be the hull of a ship, the interior of a tall steel tank – even the massive pylons that support high-power transmission lines.

They knew that a standard quadcopter would not be up to the task. Turbulence was one issue. But they also wanted to design a product that could point its sensor anywhere in space – and then make precise contact with pressure.

Picture a drone inside a sphere, with a sensor pointing forward. The Voliro T is capable of directing that sensor anywhere within that sphere, then holding it against the surface with a force of up to three kilograms.

You’ll get a better idea of what we mean in this video. What this drone can do would be impossible for a standard quadcopter. (And yes, it can still paint!)

Multiple advantages…

At first glance, you might think of this as a tricopter. But it’s really very different. First of all, the motors are in a T-5 configuration – with twin rotors on each forward arm and a single rotor for stability in the rear. Traditional tricopters use a Y configuration, with a servo tilting that rear motor for yaw authority. This rear motor is fixed, but the forward motors can be tilted and rotated forward or aft for precise thrust vectoring.

This unusual design means the Voliro T can be stable when pointed in literally any direction in space. Think back to that water tank. This drone could take measurements from the bottom-up, the top-down, and everywhere in between. The design intrigued us enough that we got in touch with Voliro.

“We exist because we want to remove working at height,” explains Chris Udell, Voliro’s Business Development Lead, adding that the Voliro T “is one of the first drones to be designed from the very start to push against a surface.”

That’s not something you can do with a quadcopter, at least not reliably.

“We’ve seen a lot of cowboys where they’ve strapped an NDT sensor to a multirotor,” he says. “Standard multirotors are amazing tools…but what they cannot do is touch a surface reliably and hold position.” That’s because turbulence close to structures can really mess with a stable position hold.

“So multirotors are really the wrong tool for the job. The other advantage is that you can push between two and three kilograms of force on the surface.” That pressure is needed for some of the sensors to get accurate readings – and another reason why long poles are a challenging option. The greater the height, the more difficult it is to apply pressure from below.

Universal payload interface

One of Voliro’s value propositions is the ability to quickly swap sensors, depending on the task.

The Voliro T interfaces with three different NDT sensors, each of which is designed to capture specific kinds of data.

They are:


Ultrasonic Flaw Detector
Measures the thickness of materials, including metals, composites and plastics
Electro-Magnetic Acoustic Transducer (EMAT) Thickness Gauge
This one measures the thickness of conductive materials, such as iron or mild steel
ElektroPhysik MiniTest
Measures the thickness of dry films, such as paint or coatings or wraps – even metallic plating (chrome, zinc, nickel)
“Because we’ve got different sensors,” explains Udell, “we have pylon inspections, offshore and onshore storage tanks, wind turbines, commercial ships (and more).”

Years in development


We know, from experience, that developing new products is challenging, exhilarating, and time-consuming. Though Voliro is now in the hands of some major early adopter clients, it wasn’t an overnight slam-dunk. The Voliro team, starting with Mina Kamel and Timo Müller – who’s also a former professional Skicross athlete (think motocross on skis) – have been at this now for six years.

That’s some tough slogging. But throughout the evolution of this product, there were regular technological milestones – as well as recognition and funding – that continuously validated the vision. Voliro provided a timeline of the company’s history; it’s impressive.


Saves time, money

Of course, none of this effort would have been worthwhile if the final product didn’t offer a clear value proposition. Voliro says its field work has proven, repeatedly, that this system is faster and more cost-effective than traditional methods. In one of its case studies, using the Voliro T saved the installation and tear-down of some 615 cubic meters of scaffolding – which would have required 400 person-hours of labour. Working on a single asset, a pilot and inspector working in tandem can capture about 200 measurements per hour.

In another example, Voliro carried out ultrasonic flaw detection inside a total of five steel tanks – measuring the walls and roofs of the assets. Scaffolding would have been impossible inside this tank, and rope access (dangling an inspector with a handheld sensor) wasn’t feasible. And the old stick method? That’s limited to a height of 12 metres, meaning in this case only limited coverage would have been possible.

The Voliro T completed inspection of all five tanks in just 1.5 days, taking a total of 700 measurement points. Each of those points was geo-referenced and also captured in 4K video. In fact, the Voliro T has two 4K cameras onboard, plus a lot more, as detailed in this company handout:



Robot as a service model

As we’re starting to see with a number of specialized drone companies, Voliro is going with a subscription model. Rather than purchase a Voliro T, you lease one. And that, says Udell, comes with a number of benefits.

“It really helps users get their return on the investment quicker. It splits down the initial outlay, so it’s a subscription charge every year.”

And what does a client get for their money?

“We give training, and also offer upgrades. The drone industry is moving very fast…so this idea of using a robot as a service and upgrading the platform as it goes along” means the customer never gets stuck with outdated equipment, nor faces the outlay of an outright purchase.

Companies like Shell and Chevron are part of Voliro’s early adopter program. And, says Udell, “There’s worldwide interest in the device.”


InDro’s take

As a research and development company, we have a lot of experience identifying technology gaps and building solutions that previously didn’t exist. We appreciate new approaches, as well as fresh engineering innovations. That’s why companies like Voliro and Canadian NDT drone manufacturer Skyguage catch our attention. They’re also important leaders as the drone market evolves from a sea of standard quadcopters into more specialized, task-specific drones.

“Voliro and Skyguage have taken a fresh look at an old problem,” says InDro CEO Philip Reece. “In doing so, both firms have really pushed the technology in new directions. The end result? More efficient and economical inspections of often complex assets while reducing risk for people.

“These are exciting times in the world of aerial and ground robots. We’ll be seeing a lot more specialized solutions in the future, including more from InDro.”

Stay tuned.

(Image/graphics courtesy of Voliro Airborne Robotics)

Throughout 2022, our friends at Osprey Integrity will be operating the only commercial Voliro unit in Canada. You can find out more about their work on their website.

Rogers speaks with InDro CEO Philip Reece

Rogers speaks with InDro CEO Philip Reece

By Scott Simmie, InDro Robotics

Rogers Communications, as you likely are aware, is a leading Canadian telecommunications and media company. Many of us watch television, cruise the internet, text and make phone calls using Rogers systems.

It’s also a leader in the world of 5G networks, which bring a quantum leap in wireless data transmission bandwidth. You can pump a lot of data via 5G, which opens up a lot of new opportunities for technologies like drones. For example, you could transmit crystal-clear 4K video with a drone over 5G. (We’ve already done it.)

What you might not be aware of is that InDro Robotics has partnered with Rogers on a number of projects involving flying drones over its 5G network, and transmitting real-time data back to the ground. InDro sees 5G as something of an inflection point in the world of drones and robots, paving the way for critical missions – even missions that are operated from hundreds or thousands of kilometres away.

A chat with Philip Reece

Because 5G and drones are going to be a big deal, Rogers had one of the writers from its business blog get in touch with InDro CEO Philip Reece. Specifically, they wanted to ask Philip to describe three cutting-edge uses of drone technology.

That’s a good question. And Philip was ready with some answers, which now appear on the Rogers For Business blog. Here’s a screen grab from the article:

Rogers 5G

The three examples…

It’s a good thing Philip (pictured here) was asked for only three examples, because 5G opens the door to a lot of new innovative and positive uses of drones. (InDro, if you weren’t aware, has always been interested in putting drones and robots to work doing good things.)

We don’t want to give away too much from that Rogers blog, but we will flag these three cutting-edge use-cases that Philip explores in greater detail:

  • Delivering urgent medical aid
  • Flying from public to private networks
  • Capturing critical data for First Responders

In each of the above examples, 5G plays a role in tremendously expanding the capabilities of drones. With First Responders, for example, a drone could be remotely operated over an incident by an InDro pilot – providing Responders with instant situational awareness, allowing them to focus on the task at hand instead of flying drones.

Philip Reece

Check it out…

There’s much more, of course, and Rogers captured it very well. It’s a really worthwhile read, and you can find it right here.

YOW drone detection program reveals surprising data during final days of Ottawa protests

YOW drone detection program reveals surprising data during final days of Ottawa protests

By Scott Simmie, InDro Robotics


Scores of drone flights took place in restricted airspace – what you might think of as a ‘No-Fly Zone’ – over Parliament Hill in Ottawa during the police operation to clear anti-vaccine mandate protests in February of 2022. While some of those flights were carried out by law enforcement, most flights were illegal and in violation of Transport Canada regulations.  

Data collected by the Ottawa International Airport Authority’s (YOW) Drone Detection Pilot Project reveals an incredible spike in flights – a total of 59 – during the days when police were actively clearing protestors from the site. 

“In an average month, you’d probably see half a dozen flights (in that same area),” says Michael Beaudette, Ottawa International Airport’s Vice President for Security, Emergency Management and Customer Transportation.  

A total of 27 different drones carried out those 59 flights over a period of four days. Of those, 25 flights exceeded 400’ above ground level (Transport Canada’s limit, except in special circumstances), with some flying more than 1500’ AGL. Eleven flights took place during hours of darkness at night – though that’s not a violation of regulations providing the drone is using lights that allow the pilot to maintain Visual Line of Sight and orientation.  

While a number of those flights were likely curious hobbyists either ignorant of or willfully ignoring regulations, it’s believed at least some were likely piloted by protestors or supporters seeking to gain intelligence of police movements. 

“The majority of those drones were not police or First Responder drones,” says Beaudette. “Some of them could have been looky-loos – just trying to see – or it could have been people wanting to know where the police were forming up.” 

Drone Detection

Drone flights, with identifying data redacted, via YOW 


Restricted airspace


The airspace above Parliament Hill (as well as 24 Sussex Drive and Rideau Hall) is restricted to all aircraft – crewed and uncrewed – unless special authorization is obtained. In terms of drones, only law enforcement or other First Responders would have legal permission to fly except in special circumstances. 

The data was obtained by Ottawa International Airport as part of a broader pilot project aimed at understanding drone traffic in proximity of the airport and developing protocols for aviation safety in the drone era. InDro Robotics is one of the partners in this project, providing key technology used in drone detection. Transport Canada regulations prohibit the operation of small RPAS within 5.6 kilometres of airports and 1.9 kilometres from helipads, except for pilots holding an advanced certification. Airspace permission is also required. (Drones weighing less than 250 grams are a different case, and we’ll touch on that shortly.)

How the drones were detected 


The airport uses two different types of technology for drone detection. The first is a micro-Doppler Radar in conjunction with an automated camera. The system, called Obsidian, comes from the British firm QinetiQ. Its high frequency (9-12 GHz) radar can detect the spinning of propellers on a drone anywhere within a two-kilometre range of the airport. Once detected, a camera automatically zeros in on the drone.  

You can get a good sense of how the system works via this QinetiQ video: 

The second system has been supplied for the trials free of charge by InDro Robotics. It’s capable of capturing data from drones manufactured by DJI, which account for approximately 75 per cent of all consumer drones.  

“Our system electronically ‘interrogates’ each device within its range,” explains InDro CEO Philip Reece. “We can triangulate the drone’s position – and on many models we’re able to also detect the type and serial number of the drone, its takeoff point, flight path, current GPS position and altitude. In addition, we can see where the pilot associated with that drone is located. With this data, YOW can quickly determine whether or not a given drone poses a threat to civil aviation.”

The system was intended to pick up any flights within a 15-kilometre radius of YOW. In practice, however, its range has been far greater. 

“When we turned it on, we realized our expectations were far exceeded,” says YOW’s Michael Beaudette. “We were getting hits 40 kilometres plus. It’s really done the heavy lifting for the drone detection project. You can identify where the pilot is, where the drone is, and where they are in real time within 15 or 20 seconds.” 

Data collected during the police operation to clear the protest reveals the bulk of the flights were carried out by DJI Mini 2 drones – very small machines that weigh just under 250 grams and which do not require a Transport Canada Remotely Piloted Aircraft System (RPAS) Certificate to operate. Microdrones like these are not prohibited from operation near airports or in controlled airspace if operated safely, but cannot gain access to the restricted airspace near Parliament without prior permission.

Drone Detection

A controversial catalyst


So. What started this project? 

The 2018 Gatwick Airport drone incident prompted many airports to take a closer look at the potential threat posed by drones. About 1000 flights were cancelled between December 19 and 21 following reports of two drones being sighted near the runway. Some 140,000 passengers were affected, with a huge economic impact. 

The incident remains controversial, because there was never any clear physical evidence that drones had indeed posed a threat. Two people were wrongfully charged, released, and later received a settlement. 

What cannot be denied, however, is that the highly disruptive incident was a massive wake-up call to airports worldwide. With an ever-growing number of drones in the air, the question of drone detection and potential mitigation became a pressing topic. If a drone detection system had been in place at Gatwick back then, it would have had concrete data as to whether there was truly a drone threat or not. 

A Blue Ribbon Task Force was launched by the Association for Uncrewed Vehicle Systems International (AUVSI) in conjunction with regulators and airport representatives. YOW President and CEO Mark Laroche was a member of the Task Force along with representatives of the Federal Aviation Administration (FAA) and NAV Canada. (Its final report can be found here.) 

Gatwick, then, was the catalyst that prompted YOW to start taking a very deep look at the issue. 

Below: Gatwick Airport. Image by Mike McBey via Wikimedia Commons

Gatwick Airport

“We wanted to be able to help shape a national drone response protocol for airports, so that we didn’t run into a situation like Gatwick, where we would have to shut down,” says Beaudette. “We didn’t even know if it’s a problem. We had to get some baseline data, some situational awareness.  So we (decided to) focus on drone detection…to identify if it was even a threat.” 

DJI, to its credit, has geofencing software that prevents its products from taking off in the immediate vicinity of major airports unless the pilot confirms on the app they have permission to do so. And while that’s useful, the geofencing is highly localized and cannot always prevent a pilot from putting a drone into the takeoff or landing path of an aircraft. 

“What causes us concern is when they’re in the flight path,” says Beaudette. 

In the fall of 2019, YOW began its pilot project. A news release made the project public in June of 2021, quoting Michael Beaudette as saying: “As an airport operator, we felt it was vitally important that we test systems to detect drones operating on flight paths, near the airport and in other restricted zones to help ensure the safety of air crews and passengers.” 

Surprising data

With the InDro and QinetiQ systems up and running, the data started coming in. It was something of a shock. 

“This opened our eyes,” says Beaudette. “We had no idea of the drone activity that was taking place.” 

There were a lot of drone flights taking place close to YOW.  

“In March of 2021, our program detected and reported on 101 drone flights within that 5.6-kilometre radius,” said CEO Mark Laroche in a news release. “April’s numbers were even higher at 167. A number of these were flown during hours of darkness and some exceeding altitudes of 1,600 feet.” 

Every month, YOW crunches the data into a comprehensive report sent to Transport Canada, NAV Canada, InDro Robotics and other stakeholders. The report from May of 2021 reveals a steep increase in the number of flights.  

Drone detection

The rapid increase was due to warmer weather and the increasing popularity of sub-250 gram drones, which are both more affordable and do not require an RPAS Certificate or registration. Here’s a breakdown of the top 30 drone models detected within a 15-kilometre radius during that same month: 

Drone Detection

The monthly report from this period states: “Detecting and identifying ‘drones of concern’ operating in the vicinity of the Ottawa Airport remains one of our primary objectives. This month, there were 19 such drones of concern within the YOW 5.6 km zone. These include drones that flew during hours of darkness, or were over 250 grams and flew over 400 ft. Of these 19 flights, there were 11 unique Drone IDs.” 

Because the system can capture drones from even farther afield, other interesting data has emerged during the course of the pilot project. 

“We started tracking other locations – Parliament Hill, Gatineau Airport,” says Beaudette. “And we were very surprised to see drones flying at all hours of the day and night and at high altitudes.” 

These weren’t just hobby flights. Unusual activity was detected around certain embassies in Ottawa, with the same drones making repeated trips. There were drones flying close to the CHEO and Civic hospital Helipads used by helicopters with the air ambulance service Ornge. There were drones apparently peering into high-rise windows, Peeping-Tom style, and others that appeared to be involved with offering intelligence to people carrying out Break & Enters. (Beaudette says police were notified in some of these instances.) 

As part of the Pilot Project, YOW worked with its partners – including NAV Canada, Transport Canada and InDro Robotics – for some real-world exercises. One such test involved determining the accuracy of the detection system. A drone was flown (with all appropriate permissions) from the E.Y. Centre, a massive exhibition/convention facility very close to the airport. When the data captured by the detection system was overlaid with the actual flight log, they were identical. Not only that, but the YOW data precisely identified the location of the pilot. 

“We could actually tell which stall in the parking lot (the pilot was standing in),” says Beaudette. 



Detection is one thing, but drone mitigation is quite something else. There are systems capable of jamming the Command and Control signal between the drone and the controller (including systems from Bravo Zulu Secure part of the InDro group of companies. Here’s a quick overview of how these systems work. 

But such systems are not in cards for YOW or other airports in Canada. Quite simply, Transport Canada and Industry Canada (which regulates radio spectrum frequencies) prohibit them in this country except in extraordinary circumstances. 

“First and foremost, a drone – like any other airplane – is considered an aircraft,” says Beaudette. “And so Transport Canada has restrictions: Nobody has the authority to interfere with the flight of that aircraft. So you won’t see airports with jammers or other kinetic solutions to that unless they have the proper authority.” 

Plus, he emphasizes, the Drone Detection Pilot Project is focused on drone detection. It’s a data-gathering exercise to help formulate protocols, provide useful information for regulators, and alert airport authorities immediately if a drone poses a threat to a flight path. YOW is not the drone police; its primary interest is in ensuring the safety of aircraft using the facility.  

“If we can detect something, we may be able to mitigate it by rerouting aircraft, delaying aircraft, or we can locate the pilot,” says Beaudette. 

Thankfully, despite many flights violating the 5.6 kilometre radius, YOW has not encountered a drone that posed a serious threat since the program began. Should that occur, it does have protocols in place to ensure civil aviation safety. Plus, of course, Transport Canada has the option of imposing heavy fines on pilots who put aircraft at risk or are flying without a Remotely Piloted Aircraft Certificate. And with the detection system in place, locating an offending pilot would not be difficult. 

Know the regs

Ultimately, the biggest piece of the puzzle is around education. Some pilots simply don’t know the rules and unwittingly violate them – an excuse that won’t help them much if facing a fine. YOW has found, for example, that pilots often fly from nearby neighborhoods or golf courses without realizing they’re impinging on that 5.6 kilometre zone.  

There’s also the issue of confusion around piloting sub-250 gram drones. Because they do not require an RPAS certificate or registration, many believe the rules somehow don’t apply to them. Yet the over-arching meaning of the regulations is clear: They must not be flown in an unsafe manner. And that includes near airports. 

“We actually had a case where we found a drone that crash-landed inside the (airport) fence,” says Beaudette. 

“We’re still the proud owners of that drone.” 

InDro’s take

Several members of the InDro Robotics team – including our CEO – have expertise as private and commercial pilots. As a result, we have perhaps a heightened awareness of the potential risk drones can cause if they’re in the wrong place at the wrong time. Drone detection at airports and other sensitive facilities is critical, and the deep data collected by YOW reflects that.

We’re proud to be part of the YOW Drone Detection Pilot Project and look forward to assisting others with drone detection and even mitigation, where appropriate. If you’re interested in exploring such a system, we’d be happy to help.