InDro builds, delivers custom robot to global client

InDro builds, delivers custom robot to global client

By Scott Simmie

 

We’ve built a new robot we’d like to tell you about.

It’s for a highly specialised use-case scenario for a global client. (And when we say global client, it’s a household name.)

This isn’t the first project where we’ve been tapped by a heavy-hitting company to design and build custom robots. We have ongoing contracts with others, where unfortunately NDAs prohibit us from disclosing pretty much anything. (We can tell you that one of the ground robots we’re building for one of those clients is pretty big.)

In this case, the client has agreed to let us tell you a fair bit about the product, providing we don’t reveal their name. We think this is a really intriguing robot, so we’re going to share some details – including images of the final product.

Here it is. And, by the way, it’s as tall as the average person. The sensor poking out on the right near the top of the cylindrical portion is positioned at eye-level.

Custom Robot

NOT A PIZZA OVEN

 

With that stretching, stovepipe-like neck, it might look like a pizza oven on wheels. But it’s not. It’s designed that way so that sensors can be roughly at the head height of human beings. The box at the bottom could be thought of as a computer on steroids.

That’s because the client wanted this robot for a very specific purpose: To be able to navigate complex crowds of people.

“The client wants to use Vision SLAM (Simultaneous Localisation and Mapping) to essentially detect humans and pathways through chaotic environments,” says Arron Griffiths, InDro’s Engineering Manager. Arron works out of our Area X.O location, where the robot was fabricated.

“Think malls, shopping centres, and stuff like that where humans are mingling to navigate around. And there’s no really defined path, the robot must organically move around people. Yes, you’d have an overall predetermined path with a desired destination, but once the chaos of humans comes in the robot would safely meander its way through crowds.”

 

LOTS OF TECHNOLOGY

 

That’s not a simple task. The client is going to supply its own autonomy software, but InDro had to work closely with them on the robot’s design and capabilities.

We mentioned earlier that this robot is SLAM-capable. That means it can map its surroundings in real time and make its own decisions – while it’s moving – about where in the ever-changing environment it makes sense to go to next. Two ZED depth cameras provide a detailed look at those surroundings (one close to the ground, the other at human eye level). So it’s constantly scanning, mapping, and making decisions about where to move next in real-time.

This is a data-dense task that requires a *lot* of onboard computing power.

“It’s basically a really powerful desktop computer on wheels,” says InDro Account Executive Luke Corbeth. “It’s outfitted with serious computational power, including the same graphic cards that people use to mine bitcoin.”

And that posed another challenge for our engineering team. The client wanted the robot to be able to operate for several hours at a time. But that advanced computing capability really puts a drain on power. 

“Once you stick these high-end computers into a battery powered robotic system, your run time drops like a stone,” explains Griffiths. “It’s a bit of a beast on power. That’s why we had to put a second battery into the unit. This is an excercise in finding a balance point, and producing a robot that will do a high-end deployment with all of this high end technology.”

Custom Robot Canada

CLIENT-CENTRED PROCESS

 

This wasn’t the first custom-robot that client has requested. The international company has a longer-term research project focussed on enabling a robot to navigate when surrounded by unpredictable human beings. It has developed, and will continue to tweak, its own autonomy software to carry out this task in conjunction with this robot.

InDro worked closely with the client on the design – both the technical requirements in terms of processors, sensors, graphic cards, run time – as well as the physical appearance. Because the client had some very tight timelines, InDro designed and built this robot in a very short period of time: Seven weeks from outset until the product was shipped.

“That’s extremely fast,” says Griffiths. “That’s the fastest custom robot I’ve seen in my working profession. You’ve got to think design cycles, manufacturing, outsourcing, testing. From this being nothing, to being shipped out in less than two months is incredible.”

 

SOLUTION-FOCUSED

 

But there’s a difference between carrying out an expedited task – and doing a rush job. The focus always had to remain on ensuring that the capabilities, design, build and testing of this machine would meet or exceed the client’s rigorous standards. And that meant even the tiniest details counted.

For example, we’d discovered with a previous robot using the same locomotion platform that there could be an issue on rough surfaces. Specifically, if you were turning a tight corner or accelerating while turning, the wheels could shudder and jump. This was especially an issue on asphalt and concrete.

InDro’s engineering team knew that with this robot any such shudders would be amplified due to the height of the machine; a minor shudder at the base would translate into significant wobbling at the robot’s top. That wasn’t something we wanted happening.

And so we created a solution. We covered the individual wheels with a 3D-printed wrap. This provides a barrier between the sticky rubber and ground, allowing the robot to slightly slide during such manoeuvres and avoiding those troubling vibrations.

 

Below: Detail of the wheels, with their new coating

Custom Robot

CLIENT REACTION

 

When we pack up and ship a custom build, the client always gets in touch after they’ve received the product. That’s the moment of truth – and the feedback we eagerly await.

Not long after the robot arrived, an email from the client landed. It included the following:

“The robot is fantastic,” they wrote. “The craftsmanship is superb; the power on the base is enabling; the intricate way in which the computer fits in the base housing is incredible; the compute box + mast feels ‘just right’ (there’s no template for social robot design, but I feel like we got very close).

“All these things make me really confident that, with the right algorithms (my responsibility) we can safely and efficiently navigate through crowds. It’s a really special robot that I can’t wait to put in the field.  Your team deserves a raise!”

This robot, though it can’t cook pizzas, is one of the most powerful Uncrewed Ground Vehicles InDro has built, at least in terms of raw onboard computational power. Engineering lead Griffiths believes its capabilities could make a variation of this machine suitable for other clients, as well.

“I think it’s a very good platform for clients who want very high computing power in a small form factor  that actually has some range, some longevity to it,” he says.

Below: Even when they’re under the gun, our engineering team takes it all in stride

Robotics Engineers

INDRO’S TAKE

 

We’re often working on projects like this. In fact, this isn’t the first major global client to tap InDro for custom builds. As our tagline states: “Invent. Enhance. Deploy.” That’s what we do.

“This was an expedited design, build and test of a completely new and computationally powerful robot,” says InDro Robotics CEO Philip Reece. “We know that InDro’s reputation rides on every product we ship and every service we provide. So we’re delighted to hear the client is as pleased with this robot as we are – and look forward to building more for them.”

Interested in what a powerhouse machine like this might do for you? Feel free to explore the possibilities by setting up a conversation with Account Executive Luke Corbeth.

 

What InDro does

What InDro does

By Scott Simmie

 

Have you ever wondered: What exactly InDro Robotics does?

The answer might surprise you.

InDro is often described as a research and development company. While accurate, that isn’t very explanatory. So we’ll give the first word to CEO Philip Reece.

“InDro Robotics does a lot of different things – ranging from product development to service provision to creating and building solutions for global clients,” he says. “But all of these tasks have some things in common:

“This is an engineering-first company – dedicating to inventing, enhancing and deploying technologies and products that make difficult work easier and more efficient. Customers purchase these technologies, and we are also a service provider using these InDro innovations.”

That’s a good starting point. But what does that actually look like? We thought a good way to explain this might be to look at some of the milestones the company has accomplished between September of 2021 and 2022.

There are, unfortunately, some that we’re prohibited from telling you about due to non-disclosure agreements with clients. But even without those, it’s been a very productive year.

InDro Commander

We’ll start with something that has allowed many clients to quickly customise and deploy ground robots. You’ll see this in the image below; it’s the module sitting directly on top of the robot chassis below. Specifically, it’s toward the front of the chassis above the InDro Robotics logo.

InDro Commander

The process

 

There’s an interesting backstory here. One of the things InDro is known for is building custom robots designed for specific tasks. But building robots – especially building multiple robots with different functionalities – is hard work.

We have a head start on this process, because we use the excellent platforms built by AgileX, China’s leading producer of quality robotic platforms and locomotion systems. But – and you can ask any robot builder – the real challenge is building robots that do things besides move.

You need to integrate sensors – everything from optical and thermal sensors to LiDAR and even arms with end effectors. You’ve got to figure out how to power these sensors and pull their data – a task that involves much more than wiring. With most robots, it means finding and integrating the proper software from the Robot Operating System libraries (ROS and ROS2). Then you generally need an onboard computer to process that data – along with coming up with a solution to moving that data from the robot to somewhere else.

Our engineering team thought there had to be a better way. In particular, lead engineer Arron Griffiths envisioned a module that might act like a kit to make this process much, much easier. InDro Robotics then developed and tested a module that could be added to most ground robotic platforms. It contains a powerful Jetson computer for onboard EDGE processing, multiple USB slots for adding peripheral sensors, two wide-angle cameras to give the operator a 360° view of the robot’s surroundings, and more.

That “more” includes the ability to operate the robot, in realtime, over a 5G or 4G cellular connection. The browser-based console provides data from all sensors in a clean and easy to navigate dashboard. And the operation? You can simply use an Xbox controller and operate your newly integrated robot from down the street – or across the country.

You can learn more about InDro Commander in this story. But the point here is that our engineers identified a problem and came up with a solution. Many of our products have a similar origin: Thinking of a new way to do things that’s easier and more efficient.

InDro now regularly manufactures and ships Commanders to clients globally, providing the ability to rapidly customise any ground robot utilising the Robot Operating System – without all the hassle. (If you’re interested in more details, feel free to reach out to Account Executive Luke Corbeth.)

Now that you’ve got the Commander basics, let’s take a brief look at our ground inspection robot Sentinel.

 

InDro Robotics Sentinel

Location, location, location

 

The phrase doesn’t just apply to real estate.

Many companies have valuable assets in remote locations. To inspect such locations generally means dispatching one or two employees to make the often-long trek and then simply walk around and ensure things are working as they should be. They’ll check for any signs of corrosion or wear, perhaps watch and listen for electrical arcing or test for thermal anomalies, even watch out for signs that wildlife has been chewing on wires or building nests in locations that might pose a risk. Inspectors are also frequently dispatched following violent weather events.

InDro started thinking about this problem, with a particular focus on electrical substations – often-remote and uncrewed facilities where the current from high-voltage transmission Iines is stepped-down for delivery to consumers. What if a robot could be placed on site that could carry out these inspections remotely? In fact, what if InDro took the InDro Commander module and customised a new ground robot for the task?

That’s how Sentinel came to be. The tracked robot features a 30x optical tilt-pan-zoom camera, a thermal sensor – along with any additional sensors clients would like incorporated. Sentinel can autonomously return to its wireless charging base and can literally be left on its own for months. An operator can remotely carry out regular inspections, read gauges, capture high-resolution photo and video, check for thermal anomalies – and generally accomplish nearly everything that could be carried out by a human inspector without the time and expense. Plus, Sentinel can be dispatched within minutes when necessary.

You can read more about Sentinel here. The robot also recently took part in exhaustive testing at the Electrical Power Research Institute’s (EPRI) substation test facility in Lenox, Massechusetts.

This is a great example of where one InDro innovation – the Commander module – helped pave the way for a second innovation: Sentinel.

It also contributed to a third: The ROLL-E delivery robot:

 

Delivery Robot

ROLL-E

 

ROLL-E is another beneficiary of the InDro Commander invention. This delivery robot is capable of remotely teleoperated urban deliveries, such as from a retail outlet to a home.

InDro has already completed trials with London Drugs at a Victoria location, delivering goods purchased online for curbside pickup.

InDro now has a second-generation ROLL-E, which the company will be unveiling shortly. ROLL-E 2.0 has been purpose-built to maximize integration into an urban environment with features like signals, brake and running lights – and a series of cameras (including depth perception cameras) to provide the operator with a 360° view of ROLL-E’s surroundings. Goods are contained in a secure cargo bay that opens only when the recipient interacts with a touch-screen.

And that’s not all.

InDro is currently building the InDro Backpack – a smaller version of Commander. Its purpose? To offer the same capabilities for teleoperation and high speed data transmission on the Unitree GO1 and its other quadrupeds.

Here’s a brief video demonstrating teleoperation of the GO1 as the backpack was under development; InDro anticipates the bolt-on 4G/5G system will be ready for clients later this fall.

 

What about drones?

 

Good question. While we were developing Commander, a similar but separate project was underway for aerial robots.

Canada Drones

InDro Capsule

 

See that guy on the right? That’s Ahmad Tamimi, an engineer at InDro’s Area X.O location in Ottawa.

When this photo was taken in the fall of 2021, he was deep into something called NERDS (Network Enhanced Realtime Drone project). It was a technology challenge in conjunction with the Ontario Centre of Innovation, Ericsson and the ENCQOR 5G network – a testbed corridor that runs through Quebec and Ontario.

You can find full details of that project here – and a link to InDro’s White Paper on NERDS here. But in a nutshell, Tamimi created a module similar to Commander, only for Enterprise drones using the Pixhawk flight controller. It enables operations over cellular, including real-time dense-data uploads directly to the cloud during flight. It also broadcasts to nearby traditional aircraft that a drone is operating – a tremendous boost to BVLOS flights.

Here’s a picture of that module on top of our Wayfinder drone:

Canada Drones

InDro Pilot

 

InDro didn’t stop there. The company created an entire software suite – InDro Pilot – for Enterprise drones (and, specifically, drones using the InDro Capsule).

That software makes it a snap to add and integrate other sensors onto drones and carry out low-latency flights over cellular networks. As with Commander, sensors can simply be plugged in to InDro Capsule, and the dashboard allows for drag-and-drop sensors modules to be added to the software suite. Want a winch? Simply add on the winch module and all operational controls and parameters are added to the InDro Pilot software. A robust and encrypted link between the InDro Ground Station and the drone ensures that any data collected remains secure. 

This project was completed in that 2021-2022 window we established earlier. InDro is currently creating a smaller and lighter InDro Capsule for commercialization of the entire InDro Pilot system. 

Here’s a screen grab of the winch software module:

Canada Drone

One more time

 

And here’s a look at the complete system…

Again, if you’d like a more thorough look at that system you’ll find far more details here.

Drones Canada

That’s not all…

 

As mentioned, it’s been a highly productive year at InDro. We’ve flown drones in the NRC Wind Tunnel in Ottawa for research on urban wind tunnels. The company has partnered with UBC, Honeywell and others on a major research project involving flights over 5G and using AI software to precisely predict energy demands and costs of any planned drone mission.

As drones begin deliveries at scale in the future, the data being obtained about the capabilities of 5G networks to handle multiple drones simultaneously – as well as costs – will be tremendously useful to the industry-at-large.

All this, while carrying out service provision for clients on a global scale, including this mission in Saudi Arabia. (That’s our photogrammetry/GIS specialist Eric Saczuk in the photo).

Drones Canada

Before we forget…

 

InDro was also in the news this year for its role in the Drone Detection Pilot Project at the Ottawa International Airport.

During the protests in the nation’s capital, data obtained by the system revealed that scores of unauthorized drone flights were taking place in restricted airspace – including above Parliament Hill, over 24 Sussex Drive, and even near embassies and other sensitive locations.

InDro takes part in this project – and supplies the drone detection equipment for free – because there’s valuable data being obtained that contributes to both safety at YOW and informed policy and procedures.

In fact, the news even made the cover of WINGS magazine:

Drone detection

Wait, there’s more!

 

Hard to believe, but there is (and congrats for sticking through this long-ish read!).

InDro reached several other milestones between the fall of 2021 and 2022. The company can’t, unfortunately, share details of these due to non-disclosure agreements. But innovative solutions have been created for global clients. In one example, a prototype robot was so successful that InDro received orders for many more.

On top of that, the company has worked closely with industry and regulatory partners during this period, including delivering InDro Pilot-enabled drones to Transport Canada and assisting RPAS parachute manufacturer AVSS with testing of its latest product. 

Drones Canada

InDro’s Take

 

With an agile and motivated team, InDro Robotics has created multiple new and innovative products in the course of a single year. Some of these were created specifically for clients, while others were organic in nature. The development of InDro Commander has paved the way for multiple robots (Sentinel, ROLL-E, ROLL-E 2.0). In addition, the company has shipped custom Commander-enabled robots to clients – including one fully customized for Solar Farm inspection. Many clients are now order Commander modules to make the customization of their own ground robotics platforms a vastly easier process.

In addition, the development of the InDro Capsule and InDro Pilot system for Enterprise drones will soon allow clients to easily customize their RPAS with additional sensors, along with secure high-data bandwidth (direct to Cloud) and remote teleoperations via console over cellular networks. Stay tuned for more on that.

CEO Philip Reece got the first word in this summary; he also gets the last:

“I’m justifiably proud of our team for the multiple milestones we’ve surpassed during the past year,” he says. “InDro has created numerous products – and participated in multiple projects – where we’ve been able to push the envelope. Every single one of these products and processes uses technological innovations to make hard jobs easier, or to significantly expand the capabilities of drones and robots. The team has really hit its stride.”

Hopefully, this gives you a much better idea of What InDro Robotics Does. And why we proudly call ourselves an R&D company.