New TC Advisory Circular contains guidance for night BVLOS flight – and much more

New TC Advisory Circular contains guidance for night BVLOS flight – and much more

By Scott Simmie

 

A new Advisory Circular from Transport Canada is generating a lot of buzz in Canada’s RPAS world.

Although an Advisory Circular is not legislation, they offer guidance and a glimpse of what the regulator is planning for the future.

“Advisory circulars are one of the methods that Transport Canada can use to provide guidance on complying with regulations,” explains Kate Klassen, Training and Regulatory Specialist at InDro Robotics. Klassen is an instructor and pilot of traditional aircraft as well as drones. Her online courses have trained more than 10,000 RPAS pilots in Canada. She has also served as Co-Chair of the Canadian Drone Advisory Committee, or CanaDAC.

“It kind of acts like a preview, foreshadowing in a way the regulations we know are coming later this fall. This one in particular is exciting because of the depth of guidance that they’ve provided,” she says.

Here’s how Transport Canada describes the purpose of the Advisory Circular – entitled Remotely Piloted Aircraft Systems Operational Risk Assessment – in its introduction:

“This Advisory Circular (AC) is provided for information and guidance purposes. It describes an example of an acceptable means, but not the only means, of demonstrating compliance with regulations and standards. This AC on its own does not change, create, amend or permit deviations from regulatory requirements, nor does it establish minimum standards.

“This AC provides information and guidance to manufacturers and operators intending to develop or operate a Remotely Piloted Aircraft System (RPAS) for operations in accordance with the requirements of Part IX, Subpart 3 of the Canadian Aviation Regulations (CARs).”

The document itself is 131 pages, and a lot of it is dense and laden with acronyms. But for operators planning complex operations down the road – including the potential of flying BVLOS at night – the highly detailed guidance offered in the document is a gold mine. It goes into extraordinarily fine detail about carrying out Risk Assessment in a variety of scenarios.

Below: Screengrab from InDro research into urban wind tunnels being carried out for the National Research Council. This was a highly complex operation involving a heavier drone in a dense urban setting and required a Special Flight Operations Certificate. The new Advisory Circular helps spell out precisely what TC is looking for from operators to ensure safe operations in multiple scenarios

 

 

NRC Urban Wind Tunnel Eric

RISK ASSESSMENT AND SFOCs

 

Back in the early days of drones, pretty much every flight required special permission – an SFOC – from Transport Canada. As drone technology and reliability/robustness improved and the regulator collaborated with the industry, detailed regulations for RPAS were first issued in 2019.

That change meant what we could generally term as routine, low-risk flights with drones weighing up to 25 kilograms could be carried out without an SFOC, providing the operator met all criteria laid out in the Canadian Aviation Regulations, Part IX. That included requirements that the operator have a Basic or Advanced RPAS Certificate to operate small RPAS. TC also established its drone portal, where compliant drones weighing more than 250 grams are registered and assigned a number by the regulator. All of this was, in general, very good news for the RPAS industry.

But for those more complicated operations – generally meaning operations with greater risk – an SFOC was still required to satisfy Transport Canada that the operation could be carried out safely. Specifically, as the AC points out, SFOCs were (and are) still required in these circumstances:

“No person shall conduct any of the following operations using a remotely piloted aircraft system that includes a remotely piloted aircraft having a maximum take-off weight of 250 g (0.55 pounds) or more unless the person complies with the provisions of a special flight operations certificate — RPAS issued by the Minister under section 903.03:

(a)  the operation of a system that includes a remotely piloted aircraft having a maximum take-off weight of more than 25 kg (55 pounds);

(b)  the operation of a system beyond visual line-of sight, as referred to in subsection 901.11(2);

(c)  the operation of a system by a foreign operator or pilot who has been authorized to operate remotely piloted aircraft systems by the foreign state;

(d)  the operation of a remotely piloted aircraft at an altitude greater than those referred to in subsection 901.25(1), unless the operation at a greater altitude is authorized under subsection 901.71(2);

(e)  the operation of more than five remotely piloted aircraft at a time from a single control station, as referred to in subsection 901.40(2);

(f)  the operation of a system at a special aviation event or at an advertised event, as referred to in section 901.41;

(g)  the operation of a system when the aircraft is transporting any of the payloads referred to in subsection 901.43(1);

(h)  the operation of a remotely piloted aircraft within three nautical miles of an aerodrome operated under the authority of the Minister of National Defence, as referred to in subsection 901.47(3); and

(i)  any other operation of a system for which the Minister determines that a special flight operations certificate — RPAS is necessary to ensure aviation safety or the safety of any person.”

“In order to be issued an SFOC – RPAS, an operator must submit an application to the Minister as detailed in CAR 903.02. In particular, CAR 903.02 (p) indicates that in addition to the specific information required by 903.02 (a) through (o), the operator must submit “any other information requested by the Minister pertinent to the safe conduct of the operation”. For certain complex operations, as determined during the application process, an Operational Risk Assessment (ORA), acceptable to the Minister, is one of the items of ‘other information’ required in support of an application for an SFOC – RPAS.”

It’s that last paragraph that’s particularly relevant to this Advisory Circular.

 

COMPLEX PROCESS

 

The issue, as many operators discovered, was that applying for an SFOC wasn’t a slam-dunk. It’s not uncommon for TC to come back – sometimes more than once – asking for more details or requesting additional steps or precautions. This slowed the approval process, which was frustrating for operators. Some conveyed to regulators that there wasn’t enough clear guidance to ensure operators were meeting TC’s detailed expectations.

“So it made the SFOC application process for those more complex operations challenging as both parties were trying to sort out what the requirements needed to be to keep things safe,” explains Klassen.

The new Advisory Circular spells out, in detail, precisely what Transport Canada is looking for from operators. It contains multiple protocols, including the fine details of carrying out standardized risk assessments, that will be of benefit to all operators – even in cases where an SFOC is not required. Klassen believes the new document is the direct result of discussions between operators and TC. In addition to making complex operations safer, it provides all the fine print to assist operators in getting everything right the first time with SFOC applications.

“This Advisory Circular, I think, is a result of all of the back-and-forths between those RPAS operators who have been pursuing the boundary-pushing applications, and Transport Canada. TC has been able to accumulate all of that guidance in one location so that the process is streamlined.”

We’ll hit on a few highlights – including BVLOS at night – but the document is so thorough and dense that we’ll link so that operators can download and study it themselves. The Advisory Circular is so detailed that it’s not easy to synopsise, as you’ll gather from the following table of contents. (Don’t worry if some of the acronyms are unfamiliar; there’s an extensive glossary):

TC Advisory Circular
TC Advisory Circular
TC Advisory Circular

WHAT’S NEW

 

This is actually a revision to a previously published Advisory Circular. Because it contains so much information, TC thoughtfully provided a round-up of what’s new – and there’s quite a bit that is.

It contains the following changes to definitions:

  1. Airport / Heliport Environment was renamed Aerodrome Environment and a 3000 ft (915 m) AGL maximum altitude provision was added.
  2. (ii)  The Atypical Airspace infrastructure masking provision was clarified, and a low altitude night provision was added. (We’ve bolded this because it’s kind of a big deal, and we’ll get to it.)
  3. (iii)  Operating Weight definition was added to support changes to ground risk assessment.

In addition, ground risk assessment now relies on the weight of the drone rather than a kinetic energy calculation. Thresholds are now based on the most recently available population density numbers, rather than just a description of the area.

All ground risk scores now assume BVLOS operations; if you are carrying out a VLOS operation that is included as a mitigating factor.

There’s more, of course. But the most attention-grabbing line from above is the provision for low-altitude BVLOS at night. This will obviously require a risk assessment and SFOC, but it’s expected this will be included in legislation anticipated this fall (Canada Gazette 2). And that opens a lot of doors for operators.

“You could fly BVLOS along power lines, transmission lines because there’s not going to be an aircraft within 100 feet vertically of that. You could also carry out deliveries at night, pending airspace,” says Klassen.

It’s also worth noting that Transport Canada had previously indicated that routine, low-risk BVLOS flights will be permitted in the forthcoming regulatory amendments. An additional level of Transport Canada pilot certification will be required for such flights.

Below: With a satisfactory risk assessment and an SFOC, drones like this might be flying BVLOS missions at night when updated regulations are released sometime in the fall of 2024

 

HIGHLIGHTS

 

When Kate Klassen went through the AC, she was impressed with the extraordinary level of detail. Every step of risk assessment and mitigation is thoroughly described, with examples in the appendices.

Many operators will be familiar with risk assessment tools. But there will also be many, particularly those who currently carry out very basic, non-complex operations, who might know the acronyms but little beyond them. This is very much a “how-to” document.

An Operational Risk Assessment (ORA) is a very methodical process – once you know the method. And here, TC outlines the specific steps laid out by the JARUS (Joint Authorities for Rulemaking on Unmanned Systems) SORA (Specific Operations Risk Assessment) process. (There are some minor tweaks here, which are explained, to optimize this for the Canadian environment.)

The AC walks you through every step of the process, and includes graphics. The document takes a much deeper dive than this overview, with each phase of risk assessment explored in detail. This, however, gives you a glimpse:

TC Advisory Circular JARUS SORA

OPERATIONAL VOLUME

 

The document also defines something critical for any risk assessment – what it calls the “Operational Volume.” This involves calculating boundaries beyond the planned flight operations for safety/mitigation/contingency purposes.

Here’s how the Circular defines it:

TC Advisory Circular Operational Volume

“ATYPICAL AIRSPACE”

 

One of the things that caught Klassen’s keen eye was the definition of Atypical Airspace. Here’s the wording from the Advisory Circular:

  1. (i)  Restricted Airspace, with authorization from the person specified in the Designated Airspace Handbook TP1820 or in a NOTAM.
  2. (ii)  Northern Domestic Airspace as defined in the Designated Airspace Handbook, outside an Aerodrome Environment, at a maximum altitude of 400 ft (122 m) AGL.
  3. (iii)  Within 100 feet (30 m) above and within 200 feet (61 m) horizontally from any building or structure which stands out vertically beyond the adjacent surface of surrounding terrain with sufficient size and shape to be noticeable to the pilot of a traditional aircraft in flight.
  4. (iv)  Within the hours of legal night, in uncontrolled airspace outside of an Aerodrome Environment, at a maximum altitude of 400 ft (122 m) AGL.

Why is this extension to the definition of Atypical Airspace (AA) exciting? When an operation takes place in AA, the Air Risk Class is automatically assigned as “a” (ARC-a). This lowers the relative SAIL, depending on your Ground Risk Class, and therefore the requirements to meet the operational safety objectives are simpler. It will give you a much easier time applying for and obtaining your SFOC due in major part to the Detect and Avoid options available to you to use.

Below: With adequate lighting (and more safety precautions), operating at night provides some interesting BVLOS opportunities!

 

INDRO’S TAKE

 

Transport Canada’s new Advisory Circular is an important, detailed, and well thought-out document. Yet again, TC is attempting to make things easier for professional operators while striking that critical balance of safety – both in the air and on the ground.

“The past decade has seen both tremendous advances in the reliability and safety of drones, and – after some initial resistance in the early days – tremendous willingness on the part of Transport Canada to safely open up new opportunities for the industry at large,” says InDro Robotics CEO Philip Reece.

“The level of detail in the Advisory’s extensive sections on Risk Assessment will be of great benefit to operators – and to the safe expansion of the industry into other use-cases, including BVLOS flights at night. We commend those at Transport Canada for both the vision and thought put into this document, and look forward to the new regulatory changes.”

You can download the Advisory Circular here.

FLYY releases “how to” guide for building, expanding a drone program

FLYY releases “how to” guide for building, expanding a drone program

By Scott Simmie

 

Thinking of starting a drone program? Perhaps you have one already, and are thinking of expanding. Or maybe your existing program grew organically on an ad-hoc basis and you’d like to ensure you’re following Best Practices.

There’s a solution for that.

Kate Klassen, InDro’s Training and Regulatory Specialist (who’s also a flight instructor for crewed aircraft),  has written a comprehensive manual specifically for this purpose.

Klassen is widely respected in Canadian RPAS and traditional aviation circles. In addition to her extensive experience as a pilot (multi-engine rating, IFR, night), she was an early adopter in the drone world. Her regulatory expertise is top-notch, and her online RPAS instruction courses have trained more than 10,000 pilots in Canada (you can find her current courses here). She’s been on the board of the Aerial Evolution Association of Canada for years, and was co-chair of Transport Canada’s CanaDAC Drone Advisory Committee. So she knows her stuff.

Now, she’s pulled together that knowledge (in addition to what she’s learned working with InDro Robotics and consulting with other companies with RPAS programs) into a single, comprehensive document that covers everything you need to know to build out a safe, compliant, cost-effective drone program.

“The goal with the book was to put in one spot all of the information that you should know,” she says.

She certainly achieved that.

Below: Kate Klassen, in one of her many elements.

 

Drone Training

SOLID KNOWLEDGE BASE

 

The e-book is entitled Remotely Piloted Aircraft Program Development Guide for VLOS and BVLOS Operations. And it covers pretty much every aspect of running a drone program – including maintenance, staffing, recency, risk assessment – and much more (we’ll give you a peek at the table of contents shortly).

There’s also, of course, a meaty section on the regulations – including the anticipated Transport Canada changes on the horizon that will permit routine, low-risk Beyond Visual Line of Sight flights (which will require obtaining an additional TC RPAS Certificate). And while the book covers high-level operations suitable for companies with mature drone programs, it also covers the basic meat and potatoes.

“This book could be used by individuals looking to use their drone in a professional capacity or as a really serious hobby – but it’s geared more for someone who is either starting, expanding or improving a drone program within their organisation,” says Klassen.

 

DECISIONS, DECISIONS, DECISIONS

 

A well thought-out drone program involves a lot of decisions. How do you choose your crew, including flight lead? When is it time to replace an aircraft? What’s a good maintenance schedule – and how do you track that? What’s the best way to manage data? And what about insurance?

You’ll find all that and more. Klassen has packed a lot (including links to references and resources) into the 55 pages of this manual. And she’s taken special care to pore through the finer details of dense Transport Canada regulatory language and write the key takeaways in clear, concise terms.

“There was a lot of digging through Transport Canada documents to gain insights into where the drone industry is going from a regulatory perspective – and put that into plain English,” she says.

Below: The cover page

FLYY Kate Klassen drone program manual

LOGICAL, ORGANIZED

 

Whether you’re a seasoned pro or someone just starting a drone program, Klassen has constructed the manual in a highly organised fashion. The progression of sections builds logically from the basics, through to complex areas such as Specific Operational Risk Assessment (SORA).

Here are the sections:

  1. Regulation Roadmap
  2. Certification
  3. Operational Considerations
  4. Budgeting
  5. Program Structure and Operation
  6. Training
  7. Equipment
  8. SORA Process

And within each of those sections? Let’s just say Klassen has it all covered. Take a look:

Kate Klassen Drone Program Manual
Kate Klassen Drone Program Manual
Kate Klassen Drone Program Manual

EXCERPT

 

It’s one thing to tell you this manual is clear and concise. It’s another to let you see for yourself. So we’re going to paste from the very top of Section One – Regulation Roadmap – to give you a better idea:

The Canadian Remotely Piloted Aircraft System (RPAS) industry took a major leap forward in June of 2019 with the publication of drone-specific regulation in the Canadian Aviation Regulations (CARs). These regulations enable route visual line of sight (VLOS) operations for small RPAS (250g – 25kg), with additional guidance for aircraft above that weight range, through a Special Flight Operation Certificate (SFOC) process, and below, with reduced prescriptive microdrone regulation.

With the release of a Canada Gazette draft of lower risk BVLOS regulation in the summer of 2023, we have an idea of the direction Transport Canada is heading and had an opportunity to raise concerns and encourage positive direction with the drafted version.

While formal regulation, once in place, will provide a clearer path to certification for BVLOS, there will still be many of the similar requirements to what’s currently in place, through the SFOC process, including training, mission planning, procedure development and technology.

  • NOTE: While BVLOS with a microdrone is not explicitly prohibited by the regulations, the onus would be on the operator to prove it was done without being reckless, negligent, risking or being likely to risk the safety of a person or aviation safety. (CAR 900.06) Throughout this document, the aircraft and operations we’ll be referring to are those with small RPAS, that is those between 250g and 25kgs, unless otherwise specified.
  • As it stands as of the time of publication, flying an RPA heavier than 25kgs or BVLOS is not permitted in Canada except if specifically authorized in a Special Flight Operation Certificate. (CAR 901.11) This document will address considerations for a BVLOS program in anticipation of BVLOS-specific regulation being introduced in 2025 and the structure, operational considerations, components of an SFOC and training.

This is a rapidly changing space. As the industry continues to develop new technology and applications, and new regulation is announced to accompany these advancements we’re going to see a lot of refinement to the processes described within this document. It’s what’s so exciting about working in this area! The information here should help you in that pursuit.

As you can see, it’s really clearly written. It’s also filled with helpful graphics like these:

Kate Klassen Drone Program Manual
Kate Klassen Drone Program Manual

INDRO’S TAKE

 

Kate Klassen is widely acknowledged as both a regulatory expert and a phenomenal communicator/instructor. She combines those skills well in the production of this manual, which we believe is a “must-have” for anyone serious about their drone program.

“Kate has tremendous expertise in this field – including personally overseeing some 150 RPAS flight reviews,” says InDro Robotics CEO Philip Reece. “This manual ticks all the right boxes, and includes material that will benefit even the most mature drone program. We’re pleased to see this published, and believe it will truly help those running serious programs make the most effective and efficient decisions.”

And the cost? You can download the manual here for $49.

That’s less than a dollar per page. And, in our opinion, a bargain.

TCXpo brings Smart Mobility exhibit to Ottawa’s Area X.O

TCXpo brings Smart Mobility exhibit to Ottawa’s Area X.O

By Scott Simmie

 

Canada’s largest Smart Mobility exhibit and demonstration took place in Ottawa September 27.

It was the second time the annual event has taken place. It brought hundreds of attendees – and more than 75 companies – to Area X.O, an innovation hub where leading Smart Mobility companies carry out research and development. The facility features a private 5G network and private roads, allowing companies to test and harden robots, drones, autonomous passenger-carrying vehicles, and more.

Sponsored by Transport Canada (that’s the “TC” in “TCXpo”), along with Invest Ottawa and Innovation, Science and Economic Development Canada (ISED), the event showcases innovations in the smart mobility space. Think the latest and greatest robots, drones, self-driving vehicles – along with a plethora of hardware and software associated with the sector.

“Today, we will celebrate Canadian innovation,” said Sonya Shorey, Vice President Strategy, Marketing and Communications of Invest Ottawa as she opened the show.

“Companies driving the smart mobility revolution. Innovators developing and commercializing multidisciplinary solutions to grand challenges and market opportunities. These innovations span every sector – from intelligent transportation to defence, public safety, security, aerospace, environment, smart agriculture, and telecommunications. And they are being developed by Canadian leaders.”

As Michael Tremblay, President and CEO of Invest Ottawa, Area X.O and Bayview Yards, put it: “We’ve got incredible capability right across the country.”

Below: Michael Tremblay at the opening of TCXpo

 

 

Michael Tremblay Invest Ottawa

DARTT

 

One of the highlights of the show was the new Drone and Advanced Robotics Training and Testing facility, also known as DARTT. Built to the demanding criteria of the US-based National Institute of Standards and Training (NIST), DARTT is designed for evidence-based evaluation of drones over a variety of surfaces (including sand, gravel and water) and obstacles (including a variable incline ramp). There’s also a netted enclosure for flying experimental drones or assessing new payloads and failsafe features in a safe environment.

InDro’s Luke Corbeth hosted tours of DARTT, allowing spectators to take control of various robots and operate them over obstacles. Here, he explains the basics of the facility:

STREET SMART ROBOT

 

InDro also publicly unveiled one of its newest innovations: The Street Smart Robot, or SSR.

Built with the support of the Ontario Vehicle Innovation Network (OVIN), led by the Ontario Centre of Innovation, the SSR will be monitoring bicycle paths in Ottawa this winter to detect snow, ice, potholes and debris that might impact the safety of cyclists. When those anomalies are detected, they’ll be flagged to road and maintenance crews at the City of Ottawa so they can be remediated.

Initially, the SSR will be remotely teleoperated by a human being who will have real-time situational awareness of all surroundings. The eventual goal is for the SSR to operate autonomously, with AI flagging problems so they can be sent up the chain.

Here’s a peek at the Street Smart Robot:

Street Smart Robot

PLENTY TO SEE

 

With more than 75 companies (and an estimated 1200 attendees) at TCXpo, there was no shortage of things to see and demonstrations to watch. Some of the highlights of the day included seeing:

  • The Skygauge drone, a unique design purpose-built for non-destructive testing, carrying out a demo flight. Its NDT probe was delicately placed against a pole while in flight, mimicking the routine carried for testing of metal tanks, coatings, etc.
  • The Wingtra drone, carrying out a flawless demo mission. The fixed-wing, two-motor VTOL is capable of transitioning to fixed-wing forward flight from hover, giving it great range and efficiency
  • A driverless tractor carrying out a circuit on a field, with commands sent remotely from a phone. Such devices will be common in the Smart Farms of the near future

Plenty of things caught our eye, including a remotely operated hang-glider (low cost, long range, high payload). There was a new Nokia dock system, allowing for automated flights in remote locations. The system recharges the drone, checks all systems, while maintaining a safe harbour from inclement weather – perfect for regular inspections in remote locations. There was even a US startup that has developed a system that will automatically lower car windows if you happen to plunge your vehicle into water.

We’ve gathered a few pix of the above – and more – which you’ll see in the gallery below:

INDRO’S TAKE

 

The first TCXpo – despite the rain – was great. This one was bigger and better – and the weather was perfect. The demonstrations and exhibits collectively made it clear: Smart Mobility is coming.

“Part of the growth between the inaugural TCXpo and this display was due to word of mouth,” says InDro Robotics CEO Philip Reece. “But part of the equation is that the industry itself is growing at a rapid pace. The world of Smart Mobility may not have yet arrived, but you can definitely see it’s on its way.”

Finally, a tip of the hat to Transport Canada, ISED, Invest Ottawa and Area X.O. Those kudos aren’t just for putting on a great show – but also for having to vision to realize that this sector will create jobs, improve safety and contribute to greater efficiency in the not-so-distant future.

TCXpo brings Canada’s Smart Mobility leaders to Area X.O September 27

TCXpo brings Canada’s Smart Mobility leaders to Area X.O September 27

By Scott Simmie

 

Canada’s premiere exhibit and demonstration of Smart Mobility technologies is coming up soon – September 27, to be precise. And InDro Robotics will be one of scores of Canadian companies demonstrating innovative products and processes.

This is the second TCXpo since its inauguration in 2022.

“TCXpo will bring together hundreds of innovators, entrepreneurs, technology developers, industry leaders, regulators, smart mobility partners and stakeholders from Canada’s Capital and across the country,” explains the Area X.O website.

“In partnership with Transport Canada (TC), Innovation, Science and Economic Development Canada (ISED), FedDev Ontario and event sponsors, TCXpo will bring together more than 70 Canadian companies to host live technology demonstrations at Area X.O. TCXpo will create an exclusive opportunity for invited guests to experience the power and impact of cutting-edge Canadian technologies, including many preparing for global markets.”

InDro is pleased to be participating – and we’ve got a lot of cool things lined up for the show.

Here’s a look at a few highlights from last year’s event – including some of the really intriguing technologies on display:

InDro at TCXpo

 

Before we get into what InDro will be up to, it’s worth explaining the name of the event. “TC” stands for Transport Canada, which is a lead sponsor of the event. The regulator is interested, obviously, in the field of Smart Mobility – including drones, autonomous passenger-carrying vehicles and ground robotics. These technologies will all play increasing roles in the future, eventually becoming blended with existing infrastructure and traditional ground and air transportation.

The “X” stands for the location – Ottawa’s Area X.O.

Operated by Invest Ottawa, Area X.O is a research and development complex that is home to some of Canada’s leading R&D companies in the Smart Mobility space (including InDro Robotics). The facility is tailor-made for companies working on next-gen technology, complete with its own 5G network and private roads that can be used by Connected and Autonomous Vehicles. For companies building and testing next-gen technology, there’s nothing like being able to take robots and drones under development directly outside for test runs. It’s routine, when visiting Area X.O, to see all manner of robots and driverless vehicles being tested. It’s also where InDro has located its R&D headquarters, with a large engineering team.

 

WHAT INDRO WILL BE SHOWING

 

We’ve got quite a few things on tap for TCXpo.

We’ll be demonstrating a number of robots InDro has developed, including Sentinel. The teleoperated workhorse has been designed for remote monitoring and surveillance. It’s ideally suited to locations like electrical substations, which are normally located far from urban centres and would generally require a human being to travel to the site for regular check-ups. With robots like Sentinel, an operator can control the robot via a dashboard from hundreds or even thousands of kilometres away.

Thermal and close-up visual inspections can be carried out to look for any anomalies – without the time and expense of dispatching a person. Once the inspection is complete, Sentinel can automatically dock with a wireless charging system so that it’s ready for the next mission.

Though we’ve demonstrated Sentinel in the past, this year we’ll be showing new capabilities with its GPS Waypoint Autonomy software. This enables an operator to set up a repeatable routine using waypoints, allowing Sentinel to carry out missions with a human simply monitoring operations rather than remotely operating them.

Below: Sentinel, equipped with InDro Commander

 

Autonomous Robot

STREET SMART ROBOT

 

This is under wraps until TCXpo, but InDro Robotics will be unveiling a new Smart City robot, specifically designed to help monitor the conditions of bicycle lanes during winter. Whether it’s snow, ice, potholes or debris that might interfere with safe cycling, our Street Smart Robot will be able to detect problems so that city staff can be notified. We’ll be revealing details about this new creation – and you’ll be able to see it first-hand. A number of people have made comparisons with the design to the Tesla Cybertruck; we look forward to hearing your own impressions.

 

INDRO PILOT DEMONSTRATION

 

InDro Pilot is a hardware and software solution that literally gives superpowers to Enterprise Drones with Pixhawk flight controllers. Similar to InDro Commander, the hardware side includes a bolt-on module that contains a powerful EDGE computer, Robot Operating System (ROS1 and ROS2) software libraries, along with USB ports and power supplies to enable the rapid integration of other sensors.

But that’s not all. InDro Pilot has been designed to stream even highly dense data to the ground and cloud securely and simultaneously over 5G networks via a *really* high-speed modem. The software includes an easy-to-use dashboard for both manual and automated flights, including customizable windows for the output of each sensor.

Thinking about Beyond Visual Line of Sight flights? InDro Pilot is ready. Whether the operator is down the block or across the country, operations with virtually zero latency can be carried out over 5G. In addition, InDro Pilot includes a software-defined radio. This allows the automated broadcast of the drone’s altitude and position directly to nearby crewed aircraft over standard RF. In applications for Special Flight Operations Certificates, this capability is viewed as mitigating risk and making BVLOS safer.

Want to integrate additional sensors? No problem. The InDro Pilot software includes drag-and-drop modules for virtually any sensor you can imagine. Even a winch can be added – with the controls ready to go. The screengrab below is taken directly from our software. (If you’d like to take a deeper dive into the capabilities of the InDro Pilot system, you’ll find a comprehensive story here.)

INDRO FORGE

 

The other big development on our end recently has been an expansion. InDro Robotics and Invest Ottawa have formed a strategic partnership that sees InDro Robotics taking over the management and operations of the facility previously known as the Bayview Yards Prototyping Lab. The cutting-edge design and fabrication lab will now be known as InDro Forge – and will expand its offerings to include limited production runs and other specialty one-off fabrication.

The addition of InDro Forge to our portfolio means more options for inventors, entrepreneurs and Small to Medium Enterprises (SMEs) looking for assistance with the design and production of high-quality prototypes. Clients can literally walk in with a napkin sketch and work with the InDro Forge team toward a polished industrial design, followed by fabrication using some of the specialty on-site machines and processes. Those include:

  • CNC machining
  • Silicone and urethane casting
  • Multi-element 3D printing (including metal)
  • Electronics and Printed Circuit Board fabrication and analysis

Though InDro Forge is located at Bayview Yards, we’ll be talking about its capabilities at TCXpo. If you’re interested in a detailed look, ask us if we can line you up with a tour. (And if you’d like to read about InDro Forge in greater detail, check out this post.)

 

DARTT

 

Plus, don’t forget about DARTT – Canada’s only Drone and Advanced Robot Training and Testing facility. Located at Area X.O, DARTT is designed to put ground robots through tests that conform to the rigorous criteria established by the National Institute for Standards and Technology (NIST). There are multiple surfaces designed to challenge agility, Ingress Protection, and incline capabilities. There’s also a huge netted enclosure to safely pilot and test drones, including those with new or experimental features that might normally require an SFOC if flown outside the confines of DARTT.

Team InDro will be running demos at DARTT throughout the day, including offering TCXpo attendees the opportunity to remotely operate a ground robot – and even pilot a drone. InDro operates the DARTT facility, and can also carry out RPAS Flight Reviews and custom training at the site.

If you think DARTT sounds cool, you’re absolutely right. How cool? Well, take a look at this:

 

INDRO’S TAKE

 

TCXpo is a great place to showcase technology, and we’re looking forward to demonstrating our latest innovations. But there’s much more to see than just InDro.

“TCXpo is a tremendous event for Canada’s Smart Mobility space,” says InDro CEO Philip Reece. “Transport Canada, Invest Ottawa and other sponsors really understand the transformative potential of these technologies and want to help showcase the industry-at-large. We’re pleased to participate, along with scores of other companies in this emerging sector.”

It’s actually a pretty big week in Ottawa. The day after TCXpo, Area X.O will host the annual CAV Canada event, a day of demonstrations, knowledge-sharing and networking devoted to Connected and Autonomous Vehicles and the companies that power them. Philip Reece will be hosting a panel at this year’s CAV Canada.

Finally, if you’re interested in attending TCXpo, you can register for free right here.

 

InDro Robotics flies in urban wind tunnels for National Research Council project

InDro Robotics flies in urban wind tunnels for National Research Council project

By Scott Simmie

 

Flying a drone in dense urban settings comes with its own set of challenges.

In addition to following regulations laid out in the Canadian Aviation Regulations (CARs) Part IX, operators have to contend with other factors. Helicopters, for example, routinely share urban airspace. And, in addition to surrounding buildings, streets are generally more densely packed with people and vehicles than other locations.

But there’s another factor that can really cause problems: Wind.

Airflow in urban centres is very different from rural settings. The close proximity of multiple buildings can amplify wind speed and create tricky – and invisible – areas of turbulence. These can cause havoc for operators, and potentially for people and property on the ground.

That’s why the National Research Council, in conjunction with Transport Canada and other partners, is conducting research on urban airflow.

Below: The view from the InDro dashboard, showing a wishbone-shaped appendage carrying two anemometers

NRC Urban Wind Tunnel Eric

WHY THE RESEARCH?

 

The National Research Council is helping to prepare for the future of Urban Air Mobility. That’s the coming world where intra-urban drone flights are routine – and where airspace is seamlessly shared with traditional crewed aircraft. As the NRC states on this page:

“The vertical take-off and landing capability of UAS promises to transform mobility by alleviating congestion in our cities.”

As part of its seven-year Integrated Aerial Mobility program (launched in 2019), the NRC has already been working on developing related technologies, including:

  • “optical sensor-based detect-and-avoid technologies to assist path planning of autonomous vehicles
  • “drone docking technologies to support contact-based aerial robotics tasks
  • “manufacturing of high-density and safe ceramic lithium batteries to enable low-emission hybrid-electric propulsion”

The NRC is also interested in wind. Very interested.

 

DRONE FLIGHTS IN URBAN CENTRES

 

Drone delivery – particularly for medical supplies and other critical goods – will be part of this world before long (home deliveries will likely come eventually, but not for some time). In the not-so-distant future, it’s likely that specific air corridors will be set aside for RPAS traffic. It’s also likely, eventually, that an automated system will oversee both drone and crewed aircraft flights to ensure safety.

Part of the path to that future involves looking at the unique characteristics of urban wind patterns – along with the potential challenges they pose to drone flights. Are there certain locations where increased wind speed and turbulence pose a greater risk to safe RPAS operations? What wind speeds might be deemed unsafe? Can data gathered help lead to guidelines, or even additional regulations, for operations in cities? If the speed of wind at ground level is X, might we be able to predict peak turbulence wind speeds? Might drone manufacturers have to revise their own guidelines/parameters to take these conditions into account?

Those are the questions that interest the National Research Council, in conjunction with Transport Canada and other partners. And InDro Robotics is helping to find the answers.

Below: A DJI M300 drone, modified by InDro and specially equipped with anemometers to detect windspeed while avoiding prop wash

NRC Urban Wind Tunnel Eric

RESEARCH

 

Previous studies have shown that turbulence caused by buildings can indeed impact the stability of RPAS flights. Now, the NRC is keen on digging deeper and gathering more data.

The research is being carried out by NRC’s Aerospace Research Centre, in conjunction with a number of partners – including McGill University, Montreal General Hospital, CHUM Centre Hospital, InDro Robotics and others. The flights are being carried out by InDro’s Flight Operations Lead, Dr. Eric Saczuk (who is also head of RPAS Operations at the BC Institute of Technology).

Urban environments create a variety of exacerbated micro-level wind effects including shear, turbulence and eddies around buildings. These effects can locally increase reported wind speeds by up to 50 per cent,” says Dr. Saczuk.

InDro has been involved with this research for three years – with earlier flights carried out in the NRC’s wind tunnel. Now, the testing has become more real-world. InDro flies a specially equipped DJI M300. The wishbone-shaped appendage in the photo above carries two tiny anemometers placed specifically to capture windspeed and variations without being affected by the thrust generated by the rotors. The drone is also equipped with an AVSS parachute, since these flights take place over people.

 

THE MISSIONS

 

Some months prior to the flights, the NRC installed fixed anemometers on the roofs of the hospitals mentioned above. This allowed researchers to obtain a baseline of typical wind speeds in these areas. Then came the flights.

Part of our mission is to fly the drone over three different rooftops and lower the drone to hover at 60m and 10m above the anemometer station,” says Dr. Saczuk.

“This allows NRC to compare the wind data recorded by the static anemometers with data captured by the mobile anemometers on the drone. Our launch sites are from the CHUM Centre Hospital and the Montreal General Hospital, which are about three kilometres apart with a pilot at each location. Additionally, we’ll be flying the drone from one hospital to the other and also along an ‘urban canyon’ between the three rooftops.”

 

NRC Urban Wind Tunnel Eric

CHALLENGES

 

Flying in urban locations always requires additional caution. The research also demands very precise altitudes while capturing data – along with piloting with the anemometers attached to the drone.

Gathering the data always has its challenges – especially when operating over a dense downtown core such as Montreal,” he says.

“Many months of planning led to two days of successful data capture on July 26 and 27. One of the main challenges is maintaining C2 connectivity amongst the tall buildings. Another consideration is ensuring a proper center of balance with the added payload well forward of the aircraft. Resultingly, flight endurance is shortened due to the extra load on the motors and thus we had to modify our flight plans to account for this. We learned a lot during the first two days of data capture!”

For Dr. Saczuk, this is a particularly rewarding research project. Why?

Quite simply because it’s cutting-edge and involves RPAS,” he says.

“We have established a great relationship with the test facility at NRC and Transport Canada, so to know that InDro is involved in helping to understand the potentially adverse effects of flying RPAS around tall buildings for the purpose of making these flights safer feels very rewarding. Personally, I also enjoy challenging missions – and this may well be the most challenging mission I’ve ever flown!”

Below: The M300, equipped with the anemometers and looking a bit like a Scarab beetle. The sharp-eyed will notice that the two anemometers are mounted vertically and horizontally

NRC Wind Tunnel Eric

INDRO’S TAKE

 

InDro Robotics has a long history of involvement with research projects and other partnerships with academia. We are particularly drawn to projects that might have a positive and lasting impact on the industry-at-large, such as this one.

“Urban wind tunnels and turbulence have the potential to disrupt even a well-planned RPAS mission,” says InDro CEO Philip Reece. 

“As we move toward more routine drone flights in urban centres, it’s important to capture solid data so that evidence-based decisions can be made and Best Practices evolve. This research will prove valuable to the Canadian RPAS industry – by helping to ensure safer urban drone operations.”

The research is ongoing; we’ll provide updates when further milestones are hit.