Draganfly sells, donates drones for use in Ukraine

Draganfly sells, donates drones for use in Ukraine

By Scott Simmie

The use of non-military drones in Ukraine has jumped significantly since the Russian invasion began. Consumer products, particularly DJI drones, have been widely used by both sides in the war for situational awareness and identifying combatant positions. They’ve also been used extensively by journalists to help convey the scale of the devastation, particularly the destruction of civilian targets.

Now, North American drone manufacturer Draganfly has announced it will be sending 10 drones for use by Ukrainian forces. The drones – five Medical Response drones and five for Search and Rescue – have been purchased by a third party as a donation to the non-profit relief agency Revived Soldiers Ukraine. They are part of an initial order (subject to conditions) of up to 200 units destined for the conflict zone.

We wanted to learn more about the drones and how they’ll be used, so we sat down virtually with the CEO of Draganfly, Cameron Chell.

Before there was DJI in Shenzhen, there was Draganfly in Saskatoon, Saskatchewan (Canada). Initially founded by Zenon and Christine Dragan in 1998, the company released its first commercialized quadrotor the following year. In 2001, it released the first multi-rotor UAV with an integrated camera system.

It wasn’t long before some early adopters in law enforcement started embracing the utility of drones, using them to help document and clear accident scenes and for Search and Rescue operations.

In fact, in 2013 a FLIR-equipped Draganfly drone helped locate someone who had sustained a head injury in an auto accident and wandered away in freezing temperatures, suffering severe hypothermia. It’s credited as the first drone rescue to save a human life. In fact, that drone now resides in the Smithsonian National Air and Space museum. The case was written about here.

 

Cameron Chell

In July of 2015, Draganfly was acquired by a US technology firm, which is how Chell came into the picture. He says the company’s connection with First Responders has only grown – and is very much part of Draganfly’s identity.

“Draganfly has sold more than 9000 drones or drone systems to public safety,” he says. “We have a strong history of being of service, or trying to be of service, to the First Responder community. That’s a big piece of culture in the organization.”

And that’s why, he says, the shipment of drones to Ukraine is a good fit.

 

Drones for Ukraine

 

The drones were actually purchased by channel partner Coldchain Delivery Systems which specializes in packaging for temperature-sensitive products with an emphasis on medical supplies. Coldchain also has a $750,000 contract with Draganfly for a multi-phase project that could ultimately bring 9-1-1 dispatched drone medical deliveries to the entire state of Texas.

Cold Chain wanted these drones purchased for Revived Soldiers Ukraine, a non-profit agency playing a significant role in assisting during the conflict. (In March alone, RSU provided goods ranging from ambulances and portable X-Ray machines through to bullet-proof vests and helmets for medical personnel and civilians totalling more than $2.75M dollars.)

A total of 10 drones were purchased by Coldchain Delivery Systems for the initial order. Draganfly is selling the drones at cost, and is donating an additional three drones free of charge. Chell says the drones had to be modified to make them suitable for use in Ukraine.

“We had to change all the comms systems out,” he explains. “It’s a different LTE system, there’s a bunch of interference.”

The first drones will ship mid-April.

 

The Medical Response drone

 

Here’s a look at the medical drone, which uses Coldchain’s proprietary system to keep medical supplies at required temperatures.

 

Draganfly

The Medical Response drone has a temperature regulated payload of 35 pounds. It’s intended for shuttling critical supplies, including blood, pharmaceuticals, insulin/medicines, vaccines, water, and wound care kits.

You’ll note in the photo above that the payload is shown on top of the drone. This machine is also capable of carrying the payload beneath, with a quick-release mechanism. Dropping the cargo close to the ground and quickly resuming flight removes potential risk for those receiving the cargo (they won’t be getting close to the drone). It also extends battery life, since the drone won’t have to fully land, shut down, then re-start. Flight time is 25 minutes, with an estimated range of three+ kilometres with a 20-pound payload. Lighter payloads – and it’s anticipated some will be lighter – will have a greater range.

We’re providing drones that are very specific for exactly what they need,” says Chell. “Some others might have an airframe, but they don’t have a temperature-managed payload – so this is very specifically built, this is mission-critical.”

Range on the first shipment will be limited to RF communication over two kilometres. But a second batch, modified for Ukraine, will utilize LTE and have solid communication over a 20-kilometre range.

And the Search and Rescue drones? They’re smaller, faster, and equipped with a thermal sensor – which could prove useful in detecting people trapped in rubble or bombed buildings. Revived Soldiers Ukraine has experienced drone operators; Draganfly will be providing virtual training for these specific drones, and is examining potentially sending trainers to Poland and even Ukraine if more drones are sent in future. (Assuming the first 10 are effective in the field, the potential is here for up to 200 drones being purchased.)

Donations

 

In addition to the these first drones, Chell says several shareholders contacted the company and offered to purchase drones to be donated to the cause. Seven drones have been purchased for this purpose. Chell says the interest has been so great the company now has a page up for people interested in directly purchasing drones for donation. The company says it will provide ongoing mission statistics for those donated humanitarian drones, and possibly even video of some missions.

Draganfly

As you can see by the price tags and builds, these are not consumer drones. The open-source, North American-made Draganfly products are purpose-built for specific tasks, and feature secure data handling.

Perhaps more important in a war zone, they cannot be tracked with an Aeroscope the way DJI products can. The Aeroscope device is capable of tracking not only DJI drones but also the location of the pilot, which – in a war zone – carries significant risks. (It’s believed that Russia has deployed Aeroscope units.)

“We don’t have system where someone else can track the pilot and track the drone,” says Chell. “These things can’t be tracked.”

(Just FYI, other drone companies have recently announced donations on the Ukraine front. We’ve seen recent announcements from Skydio and Volatus.

 

A personal connection

 

While Draganfly has a corporate tradition of working closely with First Responders, Chell reveals that a personal experience has made this mission resonate even more.

“I was at the base of the towers at 9-11 when the first plane hit,” he says.

“Not that I wasn’t a First Responder fan before that, but that weighs very prominently into my ethos or direction in wanting to give back to that community…and in humanitarian situations.”

InDro’s Take

 

Though we haven’t deployed to a war zone, we have flown disaster response missions. In addition, InDro Robotics has considerable experience with drone delivery. We shuttled COVID test kits from a remote, island-based community on a regular basis during the peak of the pandemic. We’ve also been involved in multiple trials and projects, delivering everything from prescription medications and simulated blood products through to Automated External Defibrillators.

We know, from that work, that even with deliberate planning there can be unexpected obstacles, such as gaps in cellular connectivity, interference, abrupt weather changes, etc. Draganfly has already anticipated some of these challenges, including RF interference, cellular dropouts, and the different LTE system.

Successful deliveries, especially when the cargo is critical, require getting the right product in the right hands at the right time. This is even more urgent and difficult in a hostile environment. Revived Soldiers Ukraine has been on the ground since day one of the conflict, and will have a good handle on both the challenges – and the needs.

We wish Draganfly and Revived Soldiers Ukraine the very best in this endeavour – and look forward to an update in the future.

Voliro brings a new solution to an old inspection problem with aerial Non-Destructive Testing

Voliro brings a new solution to an old inspection problem with aerial Non-Destructive Testing

By Scott Simmie, InDro Robotics

Imagine, for a second, you’re an engineer responsible for the integrity of an aging water tower. The steel structure is elevated about 10 metres off the ground and is spherical in shape.

From your vantage point on the ground, it appears to be okay. There’s no visible rust, but you’re concerned there could be corrosion beneath the paint.

What are your options? Well, you could send someone up to inspect it visually. Or, better yet, have them take a specialized tool that can precisely measure the thickness of that metal or even the paint or coating on the surface – simply by touching it.

This is known as Non-Destructive Testing, or NDT. In the photo you’re about to see, there’s a ladder leading to a lower-level catwalk. This provides some access for an inspector – but only allows them to examine a fraction of the entire structure.

In order to make a complete inspection you’ll need to look at other options. Will you build scaffolding beneath and surrounding the structure so the worker has a safe platform from which to carry out the measurements? Will you rig them with a safety harness and ropes and lower them from the top of the tank? Might you have them attach the sensor to a super-long stick?

None of these choices are optimal, and the first two involve varying degrees of risk (falls from height are one of the leading causes of death or disability in the workplace). You’ll also have to ensure you’re fully compliant with a host of worker safety regulations – all of which exist for very good reasons. Plus, scaffolding is an expensive proposition and will require about a week for a contractor to put up and then disassemble. And sticks or poles? Well, the longer the reach the more cumbersome and awkward the task.

Take a really good look at the image below. How would you solve the problem? How would you deploy resources in order to get measurements from anywhere on the water tower’s surface? And what about that black semi-sphere at the bottom? Tricky.

Of course, you’d face the same issue if you wanted to spray-paint or apply some other coating to the surface. In fact, it’s the latter issue that the engineers who developed this product initially set out to solve.

(Photo by TheTechnician27, via Wikimedia Commons)

Voliro

A Swiss solution

Back in 2016, engineering students Timo Müller and Mina Kamel set out to design a drone that could do that kind of work – spraying paint or coatings. They were at Switzerland’s Zürich ETH, a research university that has been a catalyst for a number of successful technology startups.

Working in the ETH Lab, they started from scratch on the project. But as it evolved, they realized there was an even greater need for a drone that could carry out Non-Destructive Testing, which requires that the sensor attached to the flying robot physically touch the surface of the asset being inspected. That asset might be the hull of a ship, the interior of a tall steel tank – even the massive pylons that support high-power transmission lines.

They knew that a standard quadcopter would not be up to the task. Turbulence was one issue. But they also wanted to design a product that could point its sensor anywhere in space – and then make precise contact with pressure.

Picture a drone inside a sphere, with a sensor pointing forward. The Voliro T is capable of directing that sensor anywhere within that sphere, then holding it against the surface with a force of up to three kilograms.

You’ll get a better idea of what we mean in this video. What this drone can do would be impossible for a standard quadcopter. (And yes, it can still paint!)

Multiple advantages…

At first glance, you might think of this as a tricopter. But it’s really very different. First of all, the motors are in a T-5 configuration – with twin rotors on each forward arm and a single rotor for stability in the rear. Traditional tricopters use a Y configuration, with a servo tilting that rear motor for yaw authority. This rear motor is fixed, but the forward motors can be tilted and rotated forward or aft for precise thrust vectoring.

This unusual design means the Voliro T can be stable when pointed in literally any direction in space. Think back to that water tank. This drone could take measurements from the bottom-up, the top-down, and everywhere in between. The design intrigued us enough that we got in touch with Voliro.

“We exist because we want to remove working at height,” explains Chris Udell, Voliro’s Business Development Lead, adding that the Voliro T “is one of the first drones to be designed from the very start to push against a surface.”

That’s not something you can do with a quadcopter, at least not reliably.

“We’ve seen a lot of cowboys where they’ve strapped an NDT sensor to a multirotor,” he says. “Standard multirotors are amazing tools…but what they cannot do is touch a surface reliably and hold position.” That’s because turbulence close to structures can really mess with a stable position hold.

“So multirotors are really the wrong tool for the job. The other advantage is that you can push between two and three kilograms of force on the surface.” That pressure is needed for some of the sensors to get accurate readings – and another reason why long poles are a challenging option. The greater the height, the more difficult it is to apply pressure from below.

Universal payload interface

One of Voliro’s value propositions is the ability to quickly swap sensors, depending on the task.

The Voliro T interfaces with three different NDT sensors, each of which is designed to capture specific kinds of data.

They are:

 

Ultrasonic Flaw Detector
Measures the thickness of materials, including metals, composites and plastics
Electro-Magnetic Acoustic Transducer (EMAT) Thickness Gauge
This one measures the thickness of conductive materials, such as iron or mild steel
ElektroPhysik MiniTest
Measures the thickness of dry films, such as paint or coatings or wraps – even metallic plating (chrome, zinc, nickel)
Voliro
“Because we’ve got different sensors,” explains Udell, “we have pylon inspections, offshore and onshore storage tanks, wind turbines, commercial ships (and more).”

Years in development

 

We know, from experience, that developing new products is challenging, exhilarating, and time-consuming. Though Voliro is now in the hands of some major early adopter clients, it wasn’t an overnight slam-dunk. The Voliro team, starting with Mina Kamel and Timo Müller – who’s also a former professional Skicross athlete (think motocross on skis) – have been at this now for six years.

That’s some tough slogging. But throughout the evolution of this product, there were regular technological milestones – as well as recognition and funding – that continuously validated the vision. Voliro provided a timeline of the company’s history; it’s impressive.

Voliro

Saves time, money

Of course, none of this effort would have been worthwhile if the final product didn’t offer a clear value proposition. Voliro says its field work has proven, repeatedly, that this system is faster and more cost-effective than traditional methods. In one of its case studies, using the Voliro T saved the installation and tear-down of some 615 cubic meters of scaffolding – which would have required 400 person-hours of labour. Working on a single asset, a pilot and inspector working in tandem can capture about 200 measurements per hour.

In another example, Voliro carried out ultrasonic flaw detection inside a total of five steel tanks – measuring the walls and roofs of the assets. Scaffolding would have been impossible inside this tank, and rope access (dangling an inspector with a handheld sensor) wasn’t feasible. And the old stick method? That’s limited to a height of 12 metres, meaning in this case only limited coverage would have been possible.

The Voliro T completed inspection of all five tanks in just 1.5 days, taking a total of 700 measurement points. Each of those points was geo-referenced and also captured in 4K video. In fact, the Voliro T has two 4K cameras onboard, plus a lot more, as detailed in this company handout:

 

Voliro

Robot as a service model

As we’re starting to see with a number of specialized drone companies, Voliro is going with a subscription model. Rather than purchase a Voliro T, you lease one. And that, says Udell, comes with a number of benefits.

“It really helps users get their return on the investment quicker. It splits down the initial outlay, so it’s a subscription charge every year.”

And what does a client get for their money?

“We give training, and also offer upgrades. The drone industry is moving very fast…so this idea of using a robot as a service and upgrading the platform as it goes along” means the customer never gets stuck with outdated equipment, nor faces the outlay of an outright purchase.

Companies like Shell and Chevron are part of Voliro’s early adopter program. And, says Udell, “There’s worldwide interest in the device.”

 

InDro’s take

As a research and development company, we have a lot of experience identifying technology gaps and building solutions that previously didn’t exist. We appreciate new approaches, as well as fresh engineering innovations. That’s why companies like Voliro and Canadian NDT drone manufacturer Skyguage catch our attention. They’re also important leaders as the drone market evolves from a sea of standard quadcopters into more specialized, task-specific drones.

“Voliro and Skyguage have taken a fresh look at an old problem,” says InDro CEO Philip Reece. “In doing so, both firms have really pushed the technology in new directions. The end result? More efficient and economical inspections of often complex assets while reducing risk for people.

“These are exciting times in the world of aerial and ground robots. We’ll be seeing a lot more specialized solutions in the future, including more from InDro.”

Stay tuned.

(Image/graphics courtesy of Voliro Airborne Robotics)

Throughout 2022, our friends at Osprey Integrity will be operating the only commercial Voliro unit in Canada. You can find out more about their work on their website.

A Q&A with Volatus Aerospace CEO Glen Lynch

A Q&A with Volatus Aerospace CEO Glen Lynch

By Scott Simmie, InDro Robotics

If you’re in Canada, odds are you’ve heard of Volatus Aerospace by now.

And that’s not surprising. The company has grown, and quickly, through a number of strategic mergers and acquisitions. As a result, it’s now offering a wide variety of drone services across multiple sectors – and in several countries.

That growth, and the selection of companies, have been highly strategic.

The companies Volatus has acquired are now part of The Volatus Aerospace Group. Collectively, they offer a broad swath of specialized drone services, ranging from industrial inspections, digital twins and heavy-lift capacity through to sales and one-off aerial photography and videography services. Plus, parent company Volatus is also in the game. It will soon be operating a manufacturing facility at the Lake Simcoe Regional Airport, producing two different UAVs. And it has ambitious plans in the heavy-lift drone cargo sector.

The company’s CEO is Glen Lynch, who enjoyed a long and successful career in the traditional aerospace world prior to entering the UAV space. Here’s a look at the firm’s overall offerings, taken from its website:

Drone Services

That’s a pretty ambitious palette. But Volatus has been very targeted in its acquisitions. It has focused on companies that were already specialists in their own respective niches. Pull them together under a single umbrella and you’ve got the makings of synergy – where the whole is greater than the sum of its parts.

You’ve also got the groundwork for “One-stop shopping” when it comes to drone service provision, and even the purchase of certain drones. It’s the only company in Canada we’re aware of that has taken this approach at scale. As a result, Volatus has quickly become a household name, at least in those Canadian households familiar with the UAV scene.

Before we get to our interview with Volatus CEO Glen Lynch, let’s find out more.

Drone Training

What’s under the hood?

 

Here’s a brief look at the companies within the Volatus portfolio.

Canadian UAV Services. The Ontario-based company has been in business for seven years (as of early 2022) and offers a number of services. They include: Inspection, surveys, GIS, aggregate mining data capture and more.

Connexicore. The Philadephia-based company offers a wide range of professional drone services. Connexicore operates somewhat like a hub, connecting jobs with its North American network of 1,000 freelance pilots. Those pilots fly with certification under the FAA’s Part 107.

M3 Drone Services. Based in Manitoba, M3 provides UAV services across a broad number of sectors, as well as training. The company offers its services Canada-wide.

OmniView Tech. This firm is the largest drone repair centre in Canada. The company distributes DJI products to retailers and sells them directly, as well as other drones and specialized sensors.

Skygate Videography. Located in Prince Edward Island, Skygate offers training, drone videography and inspection services.

UAViation Aerial Solutions. With offices in Vancouver and Edmonton, UAViation provides a range of aerial services, including photography, photogrammetry, LiDAR etc. Founded in 2015, its website says the firm has carried out some 4,000 flights, logging 1000+ flying hours in more than 500 locations.

MVT Geo-Solutions Inc. Volatus has announced an agreement to acquire the Quebec-based firm. According to a news release, its “services include data collection, processing, and analysis to a variety of industries including civil engineering, transport, hydrography, natural resource management, forestry, and public safety.”

And, finally…

Partner Jet/Volatus Aviation. This charter passenger jet and aircraft management firm is located at Pearson International Airport. It was the initial starting point for what has become the Volatus Aerospace Group. The company will also play a role in future Volatus plans, such as heavy lift cargo drones, some of which would require aircraft runways. The company owns and operates the Citation X jet seen below.

Volatus

Glen Lynch, CEO

With all of that background, we’ll now hop into our Q&A with Glen Lynch, Volatus CEO.

Q: What’s the elevator pitch for Volatus?

A: To understand the company, you need to understand where we came from. It’s a company that kind of grew from the aviation industry. When we looked at the drone market, we realized there was an exploding opportunity – basically an industry that was rocketing out of a nascent phase – but there were no operators of any real scale. It was basically an industry that was being served by small businesses, with the exception of companies like InDro. Very capable small business, but small business nonetheless. That’s what we saw as being the opportunity.

So what we did was, basically accumulated a number of businesses through M&A (merger and acquisition) activities that had two characteristics: A strategic location and a complementary capability. And then we consolidated them using a roll-up strategy to create what’s now one of the larger fully-integrated drone services and drone technology companies. And that’s basically who we are. We cover now all of Canada, all of the United States, and we’re starting to have some penetration now in Latin America – we have an office in Bogota, an office in Lima Peru, and business activities as far south as Chile.

Q: The Volatus Aerospace Group holds a number of companies that are all specialists in specific areas. Could you provide more details about how you selected these companies?

A: Once you identify the first company – the principle of that company usually has other companies they’re interested in. So it becomes somewhat of a referral, because the relationships already exist. And the one thing that’s particularly core: When you have an M&A strategy that’s as active as ours, we need to be able to acquire companies and retain the leadership. One of the things I’m most proud of with Volatus is that we’ve retained 100 per cent of our leadership through the acquisitions – and that allows us to scale more rapidly. Well, to be able to retain leadership there has to be a cultural fit. Oftentimes, favourable referrals from people who are already fitting with the group almost becomes a natural screening process…

At the end of the day, we’re looking for good fits. And we’ve been really fortunate to find some really talented individuals that have built some really great companies and have shared the vision of Volatus and we’ve been able to entice them to join us.

Volatus

Q: A little over a year ago, Volatus wasn’t exactly a household name. Now, you’d be hard-pressed to find someone in the drone world who hasn’t heard of you. How did you scale so quickly?

A: I would say that probably it’s something I’d love to take credit for. But the reality is, we have some really talented people, people like Rob Walker, who’s a well-educated, award-winning marketing professional. And we created an umbrella branding strategy, so at the end we’re pushing a common brand. We’re very careful not to lose the brand equity in our subordinate brands but we push out a single brand proposition, I would say, throughout the marketplace. And, again, it’s really driven by the people that become part of Volatus: They become proud of the brand, they become associated with the brand, and the brand naturally grows. On top of that we’ve hired a very large business development and sales team that work right now across Canada and the United States. And actually our office in Lima Peru has three business development people in that office as well. So we’re out there. We participate in a lot of trade shows. We spend a fair amount of money in marketing, but we try to be very, very balanced in our approach to investment and general brand awareness. And we really target places that we can generate revenues today. So we keep an eye on the blue sky, we prepare for the blue sky, but we very much focus on the places that we can actually achieve revenue activities in the near term.

 Q: You and your VP both have an extensive background in traditional aviation. What advantage does that give you in the drone world?

A: Luc Massé, who’s executive Vice-President, he was one of the driving forces in what is now one of largest aircraft companies in Canada. Funny enough, he was one of my competitors for many years in that space. But there are a few things, I guess. It helps us have a very comfortable awareness of the realities of operating in a regulated environment.

When we’re collecting data, that’s one type of service. When you’re carrying something that belongs to somebody else?  That becomes a cargo service. By definition that’s a commercial air service. So there’s a whole new range of requirements there, for example economic authority as well as just operating authority. As you know, InDro was one of the first companies to do this, they have a Canadian Transportation Agency Cargo License. And right now, to the best of my knowledge – I may be missing somebody – there are only three companies in Canada that actually hold that economic authority: (InDro), Drone Delivery Canada and ourselves at Volatus Aviation, which was formerly Partner Jet. So it really helps us position for the future, having that understanding of aviation, because largely on the cargo side, we kind of know where the industry is headed. There’s a convergence there, between manned and unmanned aircraft.

Volatus

Q: Volatus is pretty diversified in the drone world. Is there a particular area you’re involved with that you’re most excited about for the future?

A: I would say our major areas of interest in 2022, other than continuing to scale our existing business..in terms of new growth areas it would perhaps be drone cargo activities. And drone cargo for Volatus means ship-to-shore, shore-to-ship, ship-to-ship, remote communities, inter-island type activities: Things that we can do either because they’re eligible under the current regulatory framewok, or actually they can build a risk profile that will allow us to get authorization to operate under special circumstances. So that’s a big area of focus for us this year, we’re putting a lot of investment – as you’ll see in the near future – in that space.

And the other one is in public safety. Drones as First Responders is becoming. a major thing; there’s literally tens of thousands of law enforcement agencies, let alone other public safety agencies like the emergency health response units,  firefighting, Search & Rescue, all of those sorts of things. So those are two big areas of focus for us in 2022.

Note: Soon after our interview, Volatus announced its intention to purchase a planned Natilus N3.8T Large Remotely Piloted Cargo Drone. The twin-engine turboprop blended-wing aircraft has a maximum gross takeoff weight of 8,618 kilograms (about 19,000 pounds) and is capable of carrying 3,855 kilograms of cargo (8,500 pounds). This machine, slated to be delivered in 2025, will obviously require traditional airport infrastructure and significant advances in Unmanned Traffic Management. There will also be some fairly high regulatory hurdles to be cleared in order to operate a vehicle of this scale.

“The recent amalgamation with Partner Jet Inc. gives us the commercial infrastructure to operate drone cargo services, and the addition of Natilus aircraft establishes the long-term direction for our aviation division,” said Lynch in this post announcing the news. Here’s the Natilus promotional video, which offers a CGI version of the planned craft:

Q: You were listed recently on the TSX (VOL). What does this listing mean for the Volatus group?

A: Getting to the public listing was one journey, but now the heavy lifting begins. If we handle ourselves correctly, it’s an opportunity to demonstrate good governance and a serious, solid, well-run corporation. So that’s up to us to deliver on that. But the second thing that it does, it gives us access to capital markets, which allows us to – especially as the company grows in value – allows us to access capital that will continue to allow us to grow through acquisitions or fund organic growth internally through ramp-up of inventory and those sorts of things. So that’s the primary objective is really to give us the mechanism to scale.

InDro’s take

 

Volatus has emerged quickly and appears to have significant momentum. In addition to its other operations, the company is currently setting up a large manufacturing facility at the Lake Simcoe Airport, where it will be producing two UAVS. Glen Lynch, as CEO, has both the business and traditional aviation background to guide the company as the industry moves toward the world of Advanced Air Mobility (AAM), where new types of short-range aircraft will be sharing the skies with drones. We wish the Volatus team well.

Skygauge and the rise of task-specific drones

Skygauge and the rise of task-specific drones

Today, we take a dive into a pretty cool drone company.

That company is Skygauge Robotics. It’s a Canadian firm featuring an innovative drone design purpose-built for highly specialized inspections. It’s unconventional and breaks the traditional quadcopter mold.

And what is that mold? Four fixed motors, four fixed rotors – and a common sensor.

 

Tried and true…

 

With rare exceptions – such as fixed-wing drones and fixed-wing VTOLs for longer-range missions – most drones are variations on the above theme. The quad-rotor design has become the industry workhorse, and rightfully so. Quad-copters (or X8 configurations) are reliable, maneuverable, and they get most jobs done. The main differentiator between these drones, when it comes to use-case scenarios, has been sensors/payload.

End-users tend to either purchase drones with the sensors needed for the job or get a machine that allows you to swap payloads.

For a recreational pilot, that sensor is nearly always a camera. First Responders often want drones with thermal capabilities, allowing them to assess fires or search for missing persons (particularly at night) by identifying their heat signature. Other end-users might require LiDAR, precision agriculture sensors – even molecular sniffers that can detect gas leaks, the presence of toxic chemicals or measure overall air quality. Plus, of course, some operators simply want to move goods, meaning the payload is the cargo itself (though always with a camera).

All good, right? Well, to a point.

Though there’s been a rapid growth in sensors, there are some jobs for which the standard quadcopter design simply isn’t well-suited. Tasks like inspecting ductwork, chimneys, the interior of large pipes or other confined spaces are generally not a great fit for quads. Identifying that shortfall is what led Flyability to create the ground-breaking Elios (and now, Elios 2) drone.

Though technically still a quad, the Elios flies within its own collision-resistant cage, allowing it to go places where other drones cannot. If you haven’t seen it before, check out the video.

Specialized drone designs

 

The point is that, in addition to new sensors, we’re now seeing the development of highly specialized drones for specific applications. The UK firm HausBots is another company with a very different spin on traditional drone design. Its machine can seemingly defy gravity by “sticking” to walls as it climbs them using wheels. It uses rotors to create the pressure differential necessary for it to be held against the wall.

HausBots are being used for visual inspection, Non-Destructive Testing – even tasks like painting. As you’ll see, it gets up close and personal with the surface in a way that would not be possible with a standard quadcopter design:

 

Skygauge Robotics

 

With that context out of the way, we wanted to introduce you to an innovative Canadian company called Skygauge Robotics. It has created a very unique drone intended for very specific applications. Its design is unlike anything else we’ve seen.

And why is that? Well, the motors (and protected rotors) can be vectored to direct thrust. This allows the drone to be positioned in ways that would be impossible with a standard quadcopter design. Instead of simply hovering parallel to the ground, the Skygauge machine can vector its eight motors to allow the drone to hold its position (or maneuvre) while the entire machine is at a pilot-defined angle. This can include even contact with the surface of a structure while remaining in hover.

Before we get into why that matters, just take a look at this short video from Skygauge. Though it has eight motors, this is definitely not a traditional drone design.

The drone reinvented

 

We’ve borrowed that headline from the Skygauge website, along with this definition: “The Skygauge uses patented thrust-vectoring technologyto achieve the most stable and precise flight of any drone yet, making it ideal for carrying out industrial work.”

And, says Skygauge, this design is perfectly suited to a specific type of application: Ultrasonic testing, which requires a probe to make contact with the surface of the object of interest. Check out this video, which shows the Skygauge system in action:

Non-Destructive Testing

 

That probe is using ultrasound to carry out Non-Destructive Testing, or NDT. This kind of testing can measure the thickness of metal walls, protective coatings and more. The Skygauge drone comes equipped with an Olympus 38DL Plus gauge, capable of collecting a wide range of data. With swappable tips on the probe, even the integrity of weld joints or corrosion can be assessed.

In the absense of a suitable drone, such tests would normally have to be carried by a person holding this sensor up against a surface. In sectors like oil & gas or shipping, this requires scaffolding and even expensive shutdowns so that a human being can safely carry out these tests.

The Skyguage system offers massive efficiencies, with many inspections carried out in a single day by a two-person crew – and without requiring mechanical shut-downs. It’s the only drone using this design we’ve seen (though companies like Voliro Airborne Robotics are also in the NDT sphere with new styles of drones).

Funny thing is, the Skygauge drone was not initially designed with these applications in mind.

 

Indro Idea Lightbulb

Cart before the horse…

 

We spoke with CEO Nikita Iliushkin about his company, and how it got started back in 2016. Interestingly, co-founder and Chief Design Officer Linar Ismagilov invented the design before figuring out precisely what the final use-case scenario would be. A Mechanical Engineer, Ismagilov simply knew there would be applications for a drone that could come into physical contact with a surface – and Iliushkin (who attended the Schulich School of Business) could also see the potential:

“At the time, we didn’t know exactly what it would be capable of doing, we just thought it was a cool project to work on,” explains Iliushkin.

Next step? The duo succeeded in finding another Founder (a fortuitous match made via AngelList in seven days).

“That’s literally like finding a partner on any dating site and marrying them within a week,” laughs Iliushkin. “It’s like, technically, that’s possible – but the odds are one in a 1,000, one in 10,000.”

Roadblocks

 

Skygauge Robotics was on its way, though it quickly discovered that even startups with a great idea can face challenges when it comes to attracting capital.

“No investors would fund us – so we initially funded the first prototype on our student loans,” continues Iliushkin, who had luckily invested in Bitcoin. He cashed out his stock in late 2017 and put all of it in the company.

With that capital, Skygauge built its first flying model and was able to start testing the capabilities of the product. One thing was immediately clear.

“This design had radically different capabilities that other drones do not,” he says.

 

A solution in search of a problem

 

Its maneuverability and ability to make contact with a surface meant this drone would be a good fit for a variety of aerial tasks, including painting or even power-washing. But as Ismagilov refined the technical elements, Iliushkin focused on exploring business use-cases, looking to find the niche that might best suit this highly unusual design. It was during this phase that he discovered Non-Destructive Testing (NDT) using ultrasonic sensors. They knew they had a fit.

“The same way that doctors use ultrasound to see inside of people, drones can use ultrasound to see inside of metals,” explains Iliushkin. The team quickly realized its drone could be used for this kind of inspection on virtually any metal infrastructure – everything from offshore drilling platforms to ships to petroleum refineries.

“What we found was that drones today can’t do this and apply consistent force to take these readings. So drones have largely not seen adoption in this contact-based work.”

As the company’s website explains:

“Large challenges exist in the NDT industry surrounding worker safety and high-cost inspections. Using a drone would eliminate worker risk, cut downtime, and reduce costs associated with equipment rental. Thus, the Skygauge was conceived. With the help of CTO Maksym Korol, the drone’s engineering was refined and advanced. Together, the three founders assembled a team of highly capable engineers and set out to revolutionize the industrial inspection industry.”

And some of those inspection jobs? Using people, they can cost hundreds of thousands of dollars in scaffolding, shutdown costs and protective gear. Skygauge Robotics could disrupt the old way of doing things.

 

A ringing endorsement

 

The Skyguage Robotics team approached Dave Kroetsch, the former President/CEO/CTO of Aeryon Labs – which designed and manufactured high-performance UAS for military, public safety, and critical infrastructure inspection. Aeryon was purchased by FLIR in 2019 for $200 million, and Kroetsch was looking to share his expertise with other startups.

Though Kroetsch was actively assisting startups in other tech spaces, he wasn’t particularly looking to jump back into the drone world. But once he heard the pitch from Skygauge Robotics in late 2019, he could see the company was definitely onto something.

Instead of just another quadrotor, Vertical Takeoff and Landing craft that had been done 10 ways till Sunday…These guys came with a platform that was different, funded well enough that they could actually execute,” Kroetsch tells us.

He could also see, in this startup, echoes of the early Aeryon days – which resonated with him.

“I continue to tell the stories, regale the new startups about the challenges of making things fly and how much harder it is than things that operate on the ground,” he says. “When your code crashes and the drone crashes, it’s not just like it just sits there and stops working: It falls out of the sky and crashes spectacularly or flies away or something of that nature. So it’s definitely a hard business.”

Kroetsch has expertise not only as an engineer, but also a highly successful entrepreneur. He knew that the current enterprise market for standard quadrotor drones was pretty much saturated – and that significant money would not materialize for simply another variation on a theme.

But the Skygauge team had something new. In fact, so new and innovative that CEO Iliushkin and Chief Design Officer Ismagilov were singled out for recognition on the Forbes 30 under 30 list.  

“What they had was something very innovative. I’d seen the simplicity of a quadrotor design, but also the limitations. And that limitation is being able to do that (contact) work at height,” explains Kroetsch. “For me this is a capability that opens up a whole new swath of opportunity.”

(Here’s Dave, below, in a screengrab from our interview.)

A huge market

 

Skygauge Robotics could see there was a huge potential market. Kroetsch quickly realized this, as well. And when he accompanied the Skygauge Robotics team to a recent conference for the oil & gas sector in Texas, the reaction from the convention floor confirmed it. People came to the booth throughout the show, saying this was precisely the kind of solution needed.

And, says Kroetsch, he’s continuing to learn of more use-cases for the Skygauge product.

“One is doing tank inspection inside of tanker ships,” he says.

“Today they’ll drain the oil out of tank, then actually fill it with water, and put a boat in it and put inspectors on that boat as they take measurements and whatnot from the inside. As you can imagine, this is generating thousands of gallons of contaminated water, at a cost of millions of dollars to deal with this in an environmentally friendly manner. So to be able to go and do some of these applications in some of these environments without the environmental footprint I think is really, really valuable.”

Kroetsch says the documentation and governance he saw when coming on board was also quite “mature” for a young startup, likely owing to CEO Nikita Iliushkin’s business training.

And it’s that business head that has Skygauge Robotics opting not to sell its product the traditional way.

 

Leasing model

 

Skygauge is now taking orders (and deposits) from customers interested in leasing its drones on an annual basis. We’ve seen this model with Percepto, and suspect it will grow in popularity – particularly for highly specialized drones. Under the leasing model, customers will receive upgrades as the technology improves.

Dave Kroetsch believes it’s the best approach for both the company and its customers.

“One of the benefits of a leasing model comes from the continuous improvement and change in technology. It makes sense (to purchase outright) when you’re buying a dump truck; that dump truck is going to operate exactly the way you need it to for the next 15 years, whatever your useable life of the vehicle is. An asset like this is very different. You’re going to want the continuous improvements that are coming.”

 

Coming soon

 

Skygauge Robotics is now on the fourth iteration of its NDT drone and is gearing up production to start shipping to customers, likely in Q1 2022. Kroetsch is not only confident in the capabilities of this product, but believes we’ll see more and more highly specialized drones come to market in future.

“Absolutely,” he says. “Indisputably. What we will see going forward in the (drone) industry at large is specialization of manufacturers and of products tailored to a specific market.” 

Skygauge CEO Iliushkin knows the market is there. He’s done an immense amount of research over the years, learning along the way that most refineries and offshore oil platforms etc. have already adopted the standard quadcopter for visual inspections. But their maintenance crews and engineers, he says, have been clamouring for an NDT solution.

“The drone industry has reached an inflection point for drones for visual inspection. The next leap is going to be in this ultrasonic testing space.”

And Skygauge Robotics? It’s ready for contact.

 

InDro’s view:

 

As a company focused on engineering and R&D, InDro Robotics celebrates innovation. We’re pleased to see the progress Skygauge Robotics has made – and also applaud that this is a Canadian company.

Because we build our own specialized solutions for end-users, we also agree with the assessments from Kroetsch and CEO Iliushkin: The future of drones and robotics will become increasingly specialized, with task-specific products for the markets and clients that require them. (That’s why we’ve developed products like ROLL-E and Commander.)

We wish Skygauge Robotics all the best – and look forward to seeing this unique piece of engineering in action.

The amazing, unusual robots of Squishy Robotics

The amazing, unusual robots of Squishy Robotics

By Scott Simmie, InDro Robotics

 

When we think of robots, a few different images can come to mind.

You might envision something like Spot, the dog-like ground robot built by Boston Dynamics. You might also think of an Uncrewed Ground Vehicle, or UGV, such as the AgileX Scout 2.0. You might even think of a walking, talking machine from some sci-fi film. And sure, they’re all robots. For that matter, even a Roomba vacuum cleaner is a robot.

Before we hop in further, we’d like to drop in this definition, from Brittanica.com:

“any automatically operated machine that replaces human effort, though it may not resemble human beings in appearance or perform functions in a humanlike manner. By extension, robotics is the engineering discipline dealing with the design, construction, and operation of robots.”

Robots can come in unexpected shapes and sizes

Today, we’re going to look at a very atypical robot that really intrigues us. It’s made by a US company called Squishy Robotics. Why Squishy? Well, it’s because of the form factor of these unique devices. They are, actually, squishy. And that form factor allows Squishy’s robots to do things that others cannot.

Let’s take a look at an introductory video. It gives a great high-level overview of what the product does, and why it’s built the way it is: 

Use-case scenarios

As you likely noted in the video, these robots can be dropped from significant heights without damage. So in situations where you can’t easily get a drone to the ground, they can be deployed simply by dropping them from the air. Squishy has done tests dropping from up to 1,000′ from fixed-wing crewed aircraft and helicopters. (In North America, drones are generally limited to 400′ Above Ground Level).

As the Squishy website explains, “We provide sensor robots that can be air-deployed into hazardous areas to furnish persistent, ground-level, real-time data for your operations.”

Static or mobile

The company has two different flavours of Squishy Robots. One version is static, and simply reports back from a stationary position after it’s been dropped (or tossed). There’s also a version that can move itself using a rolling motion. Here’s CEO and Co-Founder Dr. Alice Agogino:

We have both a Stationary Robot and a Mobile Robot. Our Stationary Robot is currently being used by several pilot partners,” she says. “Of course, some situations require mobility, but our customer discovery determined that deploying our stationary tensegrity sensor unit (either by drone or by tossing) provided an ideal solution to improve the efficiency and increase the safety of emergency responders and the public. The robot’s six camera and sensor could provide—and continuously update—the immediate situational awareness that emergency personnel need to respond to a crisis.”

And these little devices do a lot. We’ve borrowed, with permission, this graphic from the Squishy Robotics website. It helps to explain what its robots do:

 

Squishy Robotics Feature

There are multiple use-cases for such a device. Imagine, for example, there’s been a dangerous gas leak. One of the Squishy Robots comes equipped with a sensor that can ‘sniff’ the levels of four different gases: CO, H2S, LEL, O2. That same robot has six cameras for full 360° coverage and a GPS. Because it creates its own mesh network, data can be shared with its operator even in situations where a cellular network is down.

We asked Dr. Agogino what she feels differentiates the company’s products from other robots.

“A key differentiator is that our air-deployed robots can get to places that ground robots cannot easily access,” she says.

“We can fly over rivers or wreckage and debris from natural disasters, for example. Some ground robots can manage travel around such obstacles, but our tensegrity robots can get there faster and send data sooner than a ground-based robot. Our robots can also be deployed by humans—someone can easily throw or toss one of our lightweight robots over a fence or a rescuer could drop them down a mineshaft or into a cave. Those actions aren’t possible with a heavy robot with so many breakable components.”

In an earthquake scenario, a Squishy Robot could be tossed into a building at risk of collapse. It would provide eyes on the ground, be able to sniff for dangerous gases, and – depending on the model – potentially move by rolling around. It’s pretty easy to see the utility here, and how such a device would aid First Responders in gathering data before sending people inside.

How did Squishy Robotics begin?

Good question. And the answer is found on the company’s website.

“Squishy Robotics is a spinoff of research at UC Berkeley with NASA to develop planetary probes for space exploration. The probe could orbit a planet and drop to the surface and survive to provide scientific monitoring. Squishy Robotics has commercialized this technology for a range of applications on planet Earth: disaster response, military applications, Industrial Internet of Things (IIoT), and package delivery.”

We can certainly envision situations where these devices could be put to good use in the Public Safety, Industrial/Enterprise, and even Military sectors. We particularly like that these devices could be safely dropped by drone, meaning decision-makers would be able to gather more data before dispatching human beings into potentially hazardous situations.

A solid team

Squishy Robotics is a majority female-owned startup. CEO Dr. Alice Agogino’s research has included work on machine learning, sensor fusion and a specialty called “tensegrity robotics” – which was referred to earlier. We looked up a definition for this one, and found the following here:

“Soft spherical tensegrity robots are novel steerable mobile robotic platforms that are compliant, lightweight, and robust. The geometry of these robots is suitable for rolling locomotion, and they achieve this motion by properly deforming their structures using carefully chosen actuation strategies.”

Squishy Robotics dropped from drone
Squishy Robotics on the ground
In addition to her work as CEO, Dr. Agogino’s bio states that she’s “currently the Roscoe and Elizabeth Hughes Professor of Mechanical Engineering and is affiliated faculty at the Haas School of Business at the University of California at Berkeley.”
Alice Agogino

What’s next for Squishy Robotics?

We asked Dr. Agogino that question. And it looks like there are some interesting developments on the horizon.

We are working to develop an innovative solution for increasing the number of methane inspections and the quality of recorded measurement data with our robots,” she says.

“Methane is the second most common greenhouse gas and accounts for approximately 20 percent of global emissions. Identifying methane emissions requires improved tracking and analysis and will need to incorporate tracking at remote and often unmanned sources, such as at orphan wells and pipelines.”

Squishy Robots are currently being deployed – with very positive results – by a number of partners. In fact, the capabilities of these devices were designed with those end-users in mind.

We listened to our future users and honed our robots to their specifications and needs. I think that is why we get positive feedback from virtually all the First Responder and military personnel that have tested and used our robots,” says Dr. Agogino.

“We have several ongoing pilot partnerships with U.S. fire departments that are putting our robots to work out in the field in real life emergencies.”

InDro’s Take:

We’re alway keeping our eyes out for unusual robots that break the mold and offer something of value. Squishy Robotics definitely fits this criteria. The ability to drop these devices from a significant height – directly into a situation that could be very hazardous for humans – is something we haven’t seen elsewhere. It doesn’t surprise us that this design emerged from research for planetary exploration.

And now, these devices are available for exploration on our own planet. If you’d like more information, you’ll find it at the Squishy Robotics website.

Oh, and if you’re aware of another intriguing robot you think we should write about, feel free to flag me here.

 

Advanced Air Mobility: A primer

Advanced Air Mobility: A primer

By Scott Simmie, InDro Robotics

 

The world of drones and aerospace is laden with acronyms. UAVs, VTOL and BVLOS are but a few of the terms frequently kicked around. But there’s another one that’s starting to gain traction. It’s AAM, or Advanced Air Mobility. We thought it would be worth having a look at what this means, and what the implications are as we head into the future of aerospace: A world where crewed and uncrewed aircraft take on new roles, while safely sharing the airspace.

There are a few definitions of AAM kicking around, but we particularly like this thorough take from Delloitte Insights:

“Advanced air mobility (AAM) – the emergence of transformative airborne technology to transport people and goods in new, community-friendly, and cost-effective aircraft in both rural and urban environments – represents the next inflection point in the aerospace industry’s ongoing evolution.5 AAM is expected to be the next significant change in mobility and perhaps the global economy, as it could lead to fundamentally new capabilities and applications that were previously not feasible. AAM technologies promise to transform how people and cargo are moved…”

Inflection point

 

So it’s a pretty big deal. And while “inflection point” makes us stand up and pay attention, what might this mean in practical terms? Well, for one thing we’ll see the emergence of a new category of aircraft, the eVTOL. This means an electrically powered, zero emission machine that can take off and land vertically. This eliminates the need for runways and the kind of support services (such as aviation fuel storage, hangars) required at even smaller regional airports. Some of these eVTOLs might require a pilot, but many will operate like drones – carrying goods, or people, without requiring a crew.

We asked InDro Robotics CEO Philip Reece what he envisions this new age will bring.

“Having short- to medium-range aerial options for transporting cargo – and even people – will bring multiple benefits: Using electricity or hydrogen for power will be better for the environment and these aircraft will reduce road congestion. It will also expand access for many to regional air travel due to lower infrastructure costs: Think many ‘Vertiports’ instead of large airports.

“Advanced Air Mobility will also boost jobs and skills in new areas, as well as access to resources including consumables and medical supplies. There are many cut-off communities in Canada, including some that do not have year-round road access. The list goes on. While these are only some ideas at the moment, once the communities grow into the infrastructure, new industries and solutions will rapidly come to light.”

This era is coming…

A number of companies are already building and testing such aircraft. One of the best-known is China’s EHang, which is manufacturing the EH-216 Autonomous Aerial Vehicle, or AAV. It can carry two passengers or cargo. In a future not too far removed, you might be able to summon this aircraft to a nearby landing pad with a smartphone app (think Uber), and have it deliver you, or critical cargo, from a congested urban centre to a nearby city in minutes.

There’s a growing number of other companies in this field, as well. They include Lilium, Joby Aviation, and Volocopter – to name just a few. Some of the designs – many of which have been made possible by the technology that powers drones – are pretty amazing. (If you’re interested in seeing some of these vehicles, check out this Aviation Today article.)

It’s also worth mentioning Jaunt Air Mobility. Though the company originated in the US, it now has offices and a highly experienced leadership team in Montreal. The company’s patented design is like a fixed-wing helicopter, promising an estimated range of up to 160 kilometres, with a top speed of up to 280 kph. Once in forward flight, the main rotor slows and functions like an autogyro, providing lift while saving energy. Here’s a description from its website:

Jaunt is the global leader in slowed rotor compound (SRC) technology. Our patented technology slows the rotor once aloft (the rotor tip speed equaling the aircraft’s pace) thereby reducing drag and associated vibration. In combination with a small wing sized for cruise, this produces a lift to drag ratio equivalent to a fixed wing airplane providing an exceptionally efficient flight with very low noise. Noise that is practically imperceptible in flight.”‘

Although its video is CGI, the company is *very* real, and the vehicle it’s building is based on a field-proven design:

So that’s one part of the Advanced Air Mobility picture: New, electrically powered aircraft that carry passengers or cargo to nearby communities currently not served (or under-served) because they lack either the infrastructure or the ongoing demand to support more traditional aviation models.

But there’s another piece to this puzzle. And that involves drones.

Drones and Advanced Air Mobility

Smaller Uncrewed Aerial Vehicles (UAVs, or drones) are very much part of this picture. They might be delivering prescription medications or urgent parts, or perhaps even transporting Automated External Defibrillators to the site of a 9-1-1 call (something InDro Robotics has proven in trials). They could even be moving a life-saving organ for human transplant from one hospital to another, reducing time and improving patient outcomes. Plus, or course, there’s the multitude of tasks drones can achieve on the scientific and industrial/Enterprise side of things. (A quick aside: When referring to the use of drones or these new and larger eVTOLs solely within an urban center, it’s often referred to as Urban Air Mobility, or UAM. But UAM and AAM will go hand-in-hand.)

It all paints a pretty exciting picture of the future. But it’s a future the world can’t simply dive into. With more aircraft taking to the skies, often at lower-altitude flights, the runway to this future needs to be methodical. It requires an approach often referred to as “Crawl, walk, run.” As you’ve likely guessed, that means starting out very slowly and carefully, using an incremental approach.

UTM: Uncrewed Traffic Management

One key component in this equation is minimizing the potential for any of these aircraft to come into conflict with one another. And here we get to introduce another acronym: UTM, or Uncrewed Traffic Management. The future requires a system which – through a combination of hardware and software and automation – can seamlessly ensure the skies above (and the ground below) remain safe.

Here, too, there is no shortage of companies and working groups pushing for solutions. Just as surely as vehicles like the EH-216 will one day become routine, a robust and reliable UTM solution – likely involving a combination of software integrated with NAV Canada’s air traffic control, along with detect-and-avoid sensors on aircraft and specific flight corridors – will emerge. But that’s not going to happen overnight.

In this country, a group called the Canadian Advanced Air Mobility Consortium has already started planning for the future.

Bringing Advanced Air Mobility to Canada

This isn’t something any one company – or regulator – can do on their own. It requires consensus, collaboration, and a shared vision and commitment. That’s why the Consortium, whose home page image you see below, has brought together multiple partners.

Air Mobility

Advanced Air Mobility is a team effort

As the Consortium’s website states: “We’re in this together.” That’s why the Consortium’s members are drawn from across the industry – including representation from academia and government. It would take quite some time to list them all here, but you can find a list of all members on this page. InDro Robotics is but one of many members.

“We’re building an ecosystem of national collaboration towards a sustainable, equitable and profitable Advanced Air Mobility industry in Canada,” states the Consortium’s website. Its goals, it says, are simple: “Zero emissions from Advanced Air Mobility operations in Canada.” Somewhere down the road, says the Consortium, one in five aircraft in Canada will operate with zero emissions.

We asked Chris Howe, the Consortium’s Lead Operating Officer, why he’s optimistic about this new future:

“AAM requires aviation to look outside itself and collaborate with so many innovative new technologies,” he says.

“New energy (electric and hydrogen), engineering (quieter operations), and also connectivity (5G) and advanced decision-making (artificial intelligence) are required to make AAM a safe, sustainable and equitable solution. I’m personally excited to see how this incredibly interdisciplinary industry will work together to get off the ground and solve real problems like emergency medical transportation.” 

The Consortium operates with a commitment to six pillars it believes “are necessary to make AAM an agent of global positive change.”

Those pillars, from the website, are as follows:

Air Mobility

What’s next for AAM in Canada?

Great question. Two key projects are already well underway. The first is to create a Canadian Advanced Air Mobility Master Plan. Phase One of that project is a strategic roadmap that hopes to guide the next 20 years of AAM development in Canada. It will focus on these three areas, which we’re quoting verbatim from the site:

  • Define the unifying national AAM vision for Canada
  • Identify gaps & barriers in accomplishing the vision
  • Create the national AAM implementation Roadmap & Master Plan

Phase Two will get a little more technical. The site says it’s “designed to de-risk AAM operations, coordinate business planning, and expedite technology integration required to activate revenue generating use cases.”

Goals for this phase, in conjunction with regional projects taking place in Vancouver and Toronto, include:

  • Design airspace structure, flight routes, physical infrastructure maps and noise footprints for urban and rural operations
  • Develop Concept of Operations (CONOPS) for specific AAM use cases and integration with RPAS Traffic Management (RTM)

There’s much more…

 

The Canadian Advanced Air Mobility Consortium website is very well put together. There’s a lot of information there, as well as a standing invite for other stakeholders and interested parties to get involved.

We can’t predict, at least not with certainty, where AAM will take us in the coming years. Certainly there are a number of new eVTOL designs already being tested, with many more under development. There’s no question zero-emission aircraft will be welcome additions in a world under growing pressure from climate change.

There’s also no question that these aircraft will be moving goods and people to areas currently under-served by traditional aviation – and that’s a very good thing.

But there’s one pressing question: When will all this arrive? We put that to Consortium lead Chris Howe.

“Commercial eVTOL manufacturers are telling us they are aiming for certification of their aircraft by 2024,” he says.

“We are working hard to ensure the infrastructure and regulations will allow for safe, sustainable and equitable commercial passenger operations in Canada by 2030.”

It’s a future we very much look forward to. 

And finally…

If you’re interested in reading more on the topic, Howe suggests the following links as good resources:

And a quick PS: The fact InDro Robotics is a consortium member didn’t play a role in this post. We wrote this simply because AAM is coming, and fast. Keep this on your radar.

By Scott Simmie