Beyond the Sci-Fi: Philip Reece Discusses Autonomous Defence on CTV News

The term “killer robots” sounds like a Hollywood script, but as InDro Robotics Founder Philip Reece explained on a recent segment of CTV Your Morning, the technology is already a reality on the global stage.

Watch the Interview Below: (Note: Please scrub to the 1:15:00 mark to view Philip’s segment):

Key Highlights from the Interview:

  • Navigating the Battlefield: Philip discussed how modern drones are evolving to carry out missions even after their signal with a pilot is severed, acting more like guided missiles in their final moments.
  • The Shift to “Cobots”: It’s not just about weapons. Philip highlighted the “positives” of autonomy, such as “cobots” that work alongside soldiers to clear rooms or detect mines, keeping humans out of harm’s way.
  • Canadian Innovation: From robot dogs equipped with specialized sensor backpacks to fully autonomous medical evacuation vehicles, Canada is stepping up its defence innovation.

The Tech Behind the Talk While the interview focused on the battlefield, the underlying technology—edge computing and autonomous decision-making—is the core of what we do at InDro.

InDro Cortex, is the hardware realization of these concepts. It provides the massive compute power required for the drone swarms and autonomous navigation Philip described, but in a footprint small enough to fit on the back of a robot dog or inside a compact UGV.

InDro partners with Montreal’s Chaac on landmine detection project

InDro partners with Montreal’s Chaac on landmine detection project

By Scott Simmie

 

On a recent day, small green pieces of plastic were scattered randomly across a road at Ottawa’s Area X.O.

They looked harmless. To a child, they might even look like a toy. But these are replicas of a Russian-made landmine known as the PFM-1. They are designed to maim, and will easily blow off a foot or hand if disturbed.

That’s what happened to a Ukrainian boy named Yaroslav in October of 2023. This UNICEF article outlines his injury – which took off the lower part of his right leg. Some children have been killed by these devices, which contain 37g (1.3 oz) of VS-6D or VS-60D liquid explosive.

The mines are banned by a 1997 agreement known as the Ottawa Convention or the Ottawa Treaty. But Russia, the United States and China did not sign the treaty. Ukraine ratified the convention in 2005, but in late June of 2025 issued a decree to withdraw from the agreement, stating that because Russia was deploying mines in the current conflict it had an unfair advantage.

Despite initially signing the agreement, in 2021 it was estimated Ukraine had a stockpile of 3.3M of the devices. Untold numbers of PFM-1s are scattered in the Ukrainian and Russian countryside, dispersed by planes or mortar. Their design allows them to spiral to the ground much like a maple seed.

“After years of war, Ukraine is now one of the most mine-contaminated countries in the world,” states the UNICEF article. “The ongoing fighting has left nearly a third of the country contaminated with landmines and other explosive ordnance, threatening the daily lives of children and families.”

And that, ultimately, is why these harmless replica mines – which look identical to the real thing – have been scattered at Area X.O. They’ve been placed to see if they can be identified and mapped autonomously for the purpose of destruction.

“There’s been a concerted effort by many to figure out a way to remove these from any former battlefield. So that’s why we’re involved with this project,” explains Maxime Phaneuf, Head of R&D with CHAAC technologies.

“We figured this would be a good use-case to try and do feature detection and to train a neural network to find them.”

Above: Chaac’s Maxime Phaneuf (R), with InDro Technologist Tirth Gajera, overseeing a demo. Below: One of the 3D-printed replica PFM-1s used in the project

 
Chaac Mine detection demo Area X.O PFM-1

THE PROJECT

 

The genesis for this project came from a request for proposals from Innovative Solutions Canada. The agency was looking for companies that could leverage technology for field detection – identifying objects of interest automatically. A Montreal-based company specialising in data, Chaac Technologies, was selected.

With a successful proposal, along with subsequent discussions with the Testing Department from the Department of National Defence, it was determined that a specific application – identifying PFM-1 mines – would be useful. And then Chaac got to work.

The goal was to create software, a neural network with embedded machine vision, that could identify these small devices on the ground automatically and with a high detection rate. Chaac got to work on the programming, but needed a partner with drone and ground robot expertise. The drone would be used to capture aerial photos.

The Chaac software, which had been trained to identify PFM-1s by learning what they looked like in various positions on the ground, would automatically ingest those photographs and stitch them together into a single photogrammetric image. The software would then identify and mark each of those landmines on an orthomosaic – an image that’s geometrically corrected and georeferenced. The result is a map that highlights the location of each landmine, along with a score indicating how confident the neural network is that each feature is indeed a PFM-1. That data is then transferred to an InDro ground robot, which then autonomously navigates to each of the landmines.

“From drone to final map, it’s a fully automated workflow,” says Phaneuf. “That’s our innovation.”

Chaac has named the software SHIELDS – Secured Hazard Identification and Environmental Landmark Discovery System.

“We have a consistent detection rate of between 80 and 90 per cent,” explains Phaneuf. And while landmines are the focus, the software could be applied to any feature detection. “This particular system, we can use to discover any landmark as long as we train the neural network accordingly.”

Below: An InDro-modified drone autonomously captures data from above, sending it directly to Chaac’s neural network software for object identification and precision mapping. Our Sentinel inspection robot then confirms the data by autonomously driving to each detected PFM-1.

Chaac Mine detection demo Area X.O Drone
Chaac Mine detection demo Area X.O Sentinel

THE INDRO CONNECTION

 

The necessity for a drone and UGV (Uncrewed Ground Vehicle) is what brought Chaac to get in touch with InDro.

“One of the requirements of this project was to have Canadian-owned and operated hardware, not like DJI drones from China. And so we partnered with Indro,” says Phaneuf.

InDro built two Open-Source RTK drones operating with ROS2 (Robot Operating System), which will be delivered to the Department of National Defence as part of the contract. Our third-generation Sentinel UGV, also with RTK, is used as the ground robot. In a real-world deployment, the UGV could be used to detonate the mines, either by driving over them with a hardened shell, or with some other attachment that could trigger the devices.

And the next step for Chaac? Since the company has shown it can detect very small objects, Phaneuf anticipates DND might ask for detection of something else – say, vehicles for example. Chaac hopes its PFM-1 SHIELDS detection system will make it into the real world.

“I would be very happy if we can save some lives with this project and deploy it in in the Ukraine, or maybe after the war in Russia,” says Phaneuf. “We have hopes that this project will bear fruit and can be deployed in an actual combat or post-battlefield situation.”

We share that view.

Below: Chaac CEO Guillaume Nepveu explains the project during a recent episode of our Sound Byte micro-podcast

INDRO’S TAKE

 

We are pleased to have been brought in as a partner by Chaac on this project. As an R&D company specialising in UGVs and UAVs, it was a perfect fit. We also applaud the use-case, and hope Chaac’s SHIELDS system can one day be used to detect and destroy PFM-1s or other surface landmines.

“Landmines, sadly, continue to pose a threat to soldiers and civilians in many parts of the world,” says InDro Founder and CEO Philip Reece. “There’s no question technology can be, and has been, used to great effect to neutralise this threat. Chaac’s machine vision/neural network approach is a perfect example of combining cutting-edge software and hardware together with a single and positive goal. We look forward to seeing the next steps.”

We’ll keep you updated.

InDro and partners advance AED drone delivery research

InDro and partners advance AED drone delivery research

By Scott Simmie

 

When someone goes into cardiac arrest, literally every second counts.

The chances of survival drop by between seven and 10 per cent for each minute that passes between the event and resuscitation. So getting an Automated External Defibrillator to the scene as quickly as possible can, literally, mean the difference between life and death.

Back in 2018, InDro partnered with the County of Renfrew Paramedic Service and Dr. Sheldon Cheskes, Affiliate scientist, Evaluative Clinical Sciences, in the Schulich Heart Research Program at Sunnybrook Health Sciences Centre, to carry out field research that compares the speed of delivering an AED via drone versus ground-based EMS. We have also worked with Peel Regional Paramedic Services on these trials.

Research was well underway, with multiple successful trials, when the pandemic hit and the project was paused. It has now resumed, and was recently featured in this news article.

Below: A video showing one of our test trials, where we lowered an AED kit at a precise location via winch

THE BENEFITS

 

The benefits are clear: The faster you can get an AED to a cardiac arrest victim, the more likely they are to survive. In multiple trials we worked with the County of Renfrew Paramedic Service to compare the speed of drone delivery with that of ground-based EMS. A simulated emergency call was placed, and the paramedics hit the road at speed. At the same time, we dispatched a drone carrying an AED.

The drone was faster – as it can head directly to the scene as the crow flies. This is particularly important in rural and remote settings, where roads only rarely present a direct route to the target destination.

In fact, Dr, Sheldon Cheskes and colleagues have been carrying out research to determine the feasibility of AED delivery by drone and have published papers in peer-reviewed journals.

In a 2020 research paper published in the Journal of the American Heart Association, they wrote about the results of six simulations in two rural areas. In one of those tests, the distance ground EMS had to travel was 20 kilometres, versus nine kilometres for the drone.

“During each flight, the AED drone arrived on scene before the ambulance, between 1.8 and 8.0 minutes faster,” they wrote. “This study suggests AED drone delivery is feasible, with the potential for improvements in response time during simulated sudden cardiac arrest scenarios.”

 

THE CHALLENGES

 

Getting the drone to the precise location is no problem. In fact, a 911 call contains the coordinates where the drone must be dispatched to – and that data can be automatically integrated into our flight planning software.

But because speed is of the essence, the research is also exploring how to most quickly get the AED from the drone into the hands of those awaiting the device on the ground. Is it faster to land the drone? Drop the device in a well-padded enclosure from a low height? Land and disarm the drone?

Then there’s the issue of instructing the Good Samaritans on the ground on how to effectively use the AED. In one of our trials, a cellphone was included with the AED. That cellphone was preset to a live video call with a First Responder. The moment someone opened the package, there was a professional on the other end who could offer instructions.

Below: Television coverage of when InDro first began exploring drone delivery of AED – all the way back in 2014

 

INDRO’S TAKE

 

As you just saw, we actually explored this use-case on Salt Spring Island long before the pilot project, with some tests back in 2014. So we could see the benefits of this use-case early on. Drone technology has improved immensely since then – meaning we can fly greater distances at greater speeds.

“We are immensely pleased to see this research get back underway after the pause forced by the pandemic,” says InDro Founder and CEO Philip Reece. “We’re also in a position now where we can explore using fixed-wing VTOL for greater speed and integrate more robust command and control protocols. Our ultimate, long-term vision includes the potential for a series of strategically placed docks in rural areas that contain drones and AEDs that can be automatically and autonomously dispatched the moment that 911 call comes in.”

We look forward to updating you after the next trial.

Canadian Startup KiDrone has big plans – and technology – for reforestation

Canadian Startup KiDrone has big plans – and technology – for reforestation

By Scott Simmie

 

A Canadian startup has ambitious plans to deploy long-range, high-payload drones for reforestation at scale.

Using an extended-range, heavy-lift drone and patent-pending Machine Learning, the company calculates it could drop one million seeds in a single mission. Not only that, but it could plant seeds for different species in the most appropriate locations.

“We are a reforestation technology company,” explains CEO and Founder Trevor Grant. “We are going to be deploying heavy-lift unmanned helicopters coupled with AI machine learning to scale reforestation to industrial levels.”

That’s an impressive goal. Let’s look at how KiDrone plans to achieve it.

 

GENESIS

 

Many of the startups we’ve met over the years were founded by engineers. But CEO/Founder Trevor Grant is a lawyer by trade. So how did he wind up starting a venture involving drones and reforestation? Well, a couple of things happened.

First, he happened to watch a documentary on Netflix called Breaking Boundaries: The Science of Our Planet. It was about climate change, and the need to take urgent action on a global level. The following day, he happened to be reading an article about Beyond Visual Line of Sight flights. And then he started thinking.

“It tweaked in my head, perhaps the largest impediment to this (reforestation) is labour supply. And fleets of autonomous drones might be able to tackle such a problem at scale,” says Grant. Plus, he was also thinking about his children, living during an unprecedented era for planet earth.

“There was a genuine desire to leave the world to my kids better off than it was left to me,” he said during an interview at Toronto’s Collision conference.

And so KiDrone was soon born, with a mission to drop enough seeds to truly make a difference. But not just haphazardly. To ensure the best results, seeding would need to be targeted – with the correct species dropped in locations best suited to their survival and the broader ecosystem. Plus, the seeds would need to be coated.

“Seed encapsulation technology has been around for a very long time, but mainly in the agricultural sphere, not much for the reforestation or restorations sphere,” explains Fatima Mahmud, KiDrone’s Chief Scientific Officer. Mahmud is an environmental scientist born in the Middle East and who studied at the University of California, Berkeley, before obtaining her Masters degree in Toronto.

“Some of the reasons for encapsulating a seed, for aerial seeding specifically, is number one: It increases the flowability of the seed through the (dispersal) mechanism. Number two: It adds weight to the seed so the seed drops to the site. You can also add materials or compounds to the encapsulation that can deter pests and predators. And making the seed uniform allows it to find a suitable microsite in the soil once it’s dispursed.”

Below: Encapsulated seeds at KiDrone’s Collision display

 

 

 

KiDrone seeds

GETTING STARTED

 

Going from an idea to a viable product or service is a voyage – just ask any Startup. And the first part of KiDrone’s path has been to demonstrate that this is a viable, doable solution.

“It’s been a two-year journey to validate our hypothesis and validate where direct seedings works and where it doesn’t work,” explains CEO Grant. “Because direct seeding isn’t a cure-all for all reforestation needs. It’s highly effective in many situations – but not all.”

Post-wildfires (and Canada has had many this year), is a very promising use-case. Grant says high-intensity fires can consume the natural seed inventory that might be on the forest floor.

“So there’s a need for direct seeding at that point. Where direct seeding struggles is in drought-prone conditions,” he says.

 

TARGETED SEEDING USING AI

 

It’s not that difficult to deliver seeds via a drone. In fact, some companies have been dropping seeds and seed pods successfully. What differentiates KiDrone is its planned use of AI – and a proprietary seed dispenser capable of holding the seeds of 12 different species and disbursing them selectively. By examining multiple data points during flight, the drone will autonomously dispense the seeds best suited to particular locations based on the mission profile.

“There’s thousands of data points for any given site – climactic, GIS, various forms of imagery or LiDAR, soil lab results – an endless amount of data you can get to classify or gain conditions on a site,” explains Grant.

“And that will all lead to whether certain species may or may not be optimal (for a specific location), and what other species might be supportive. Our AI will be able to determine which trees are more likely to succeed in which areas. Because we’re not interested in monoculture or pine nurseries. We’re very interested in a more holistic reforestation approach that includes many different species, supported species, and Indigenous species of medicinal worth and spiritual worth.”

That last part is very important to KiDrone.

“Our biggest commitment is to work alongside the Indigenous communities where we operate. It’s their land and it’s their traditional territory. They should be the ones directing how reforestation happens. We simply view our roles as facilitating the reforestation goals that they have.”

Below: Founder/CEO Trevor Grant at the Collision conference.

 

KiDrone

THE NUTS AND BOLTS

 

It’s clear, speaking with CEO Grant, the company is working toward its goal via a methodical, evidence-driven trajectory. There’s been a lot of work on seed encapsulation so far though a partnership with the Northern Alberta Institute of Technology (NAIT), as well as a flight using a crewed helicopter for dropping encapsulated seeds. It successfully seeded 40 hectares.

“Our largest concern is validating where the seeds will grow, not where the drone will fly,” he says. “We’re concerned about the science behind encapsulation and determining where it’s effective to seed and where it’s not. We’re putting the science first, because we’re looking to do this for the next 20 years and not simply flip a carbon offset project.”

Existing startups doing seeding tend to use multi-rotor designs, which limits the distance they can cover per mission. Here, KiDrone differentiates itself by planning to use a much longer-range drone. The company has established a relationship with Scheibel, a manufacturer of UAVs (and landmine detectors). The company has a long-range uncrewed helicopter called the S-100. It can carry 50 kilograms of payload (seeds plus dispersal mechanism), and has an incredible range – up to 1000 kilometres, says Grant.

“The great thing about having such a large airframe that we’re looking to deploy – we’re able to carry 12 different species in one flight,” he says.

“So mid-flight, while travelling at 100 kilometres an hour, the system will be able to disperse an entirely different species, change the ratio of species being disbursed, add different nitrogen fixers or supportive species, all autonomously, based on AI and a seed-planting pattern that is pre-loaded to the mission.”

 

Below: A seedling that germinated from one of KiDrone’s encapsulated seeds. Image courtesy of KiDrone

KiDrone

THE BUSINESS CASE

 

There can be no question there’s an environmental demand for reforestation at scale. KiDrone’s pitch deck states “Reforestation in Canada is broken.

“Since 2010, Canadians have lost more than 44 million hectares of tree cover due to timber harvesting, wildfires, and commercial development. This represents an urgent, unmet need and opportunity to radically transform how industry & government deliver and scale reforestation in Canada.”

And with the devastating and deadly wildfires of 2023, the country has lost even more of that tree cover. The current system, of using human beings to plant seedlings, simply cannot keep up with the demand. It’s also inefficient – and there are vast tracts of forest in Canada that are simply inaccessible.

The big forestry companies also tend to have reforestation deficits, where they simply have not been able to reforest at a rate equal to the harvesting of timber. Plus, the KiDrone deck points out, “Corporate Canada’s demand for carbon offset opportunities vastly outweigh the current supply.”

So there’s not only an environmental imperative, but there’s also a strong business case. The company has been targeting three different sectors:

  • Top 12 Canadian forestry companies, each with reforestation requirements > 25k hectares
  • Federal & provincial forestry departments “focused on post-wildfire timber supply mitigation”
  • Carbon credit offset buyers and sellers

It all equals huge demand for a service like this, says Grant.

“Endless,” he says. “I think the wildfires we’ve had to date are a good example of of how large the reforestation required is in Canada alone – let alone globally.”

The company’s business model projects dropping 10k seeds per hectare in the future, with a 20 per cent viability rate. That comes out to 2,000 trees per hectare, at $.50 per tree. That’s $1,000 per hectare. Based on operating one drone and starting operations in 2024, its revenue projections climb to more than $1.2M by 2026 – and that’s with a single drone deployed. And because costs are low when compared with traditional tree seeding/planting methods, nearly all of that revenue would be profit.

The company is currently in a seed round (and we’re talking capital here, not trees), which its hoping to close late this summer or early fall. Once complete, there will be some additional immediate hires and KiDrone will be in “an early operational state.”

Grant is aware that BVLOS permission won’t be automatic, so he anticipates some of the early deployments will be VLOS, or operating with specific SFOCs.

INDRO’S TAKE

 

We’ve been through the Startup path, and know of the many challenges that come with the territory. But we also know a good idea when we see it. KiDrone has clearly identified its market and has laid out a solid path to commercialisation. It’s also a perfect application of autonomous technology for the Three Ds – taking on jobs that are dirty, dull and dangerous.

“In an era of climate change and with record-setting temperatures, getting more trees on the planet at scale helps all of us. I see this as definitely a Drones For Good application,” says Indro Robotics CEO Philip Reece. “I also really like seeing that KiDrone is taking it slow with an evidence-based approach – and a solid business plan. I look forward to hearing about their first deployment.”

You can learn more about KiDrone here.