Good dogs: A look at the newest Unitree quadrupeds

Good dogs: A look at the newest Unitree quadrupeds

By Scott Simmie

When people think of robots, they often picture industrial robotic arms doing repetitive work on assembly lines: Precision welding, picking and placing objects – those sorts of applications. Or perhaps a wheeled platform carrying a load from one location in a factory to another.

In recent years, however, new algorithms and technologies have led to an increase in the number of quadruped robots. These are the four-legged devices that inevitably remind observers of dogs, since they have roughly the same shape and move with a similar gait. They’re also (depending on the robot) roughly the same size as medium to large dog breeds.

The most well-known of these is likely Spot, built by Boston Dynamics. Built primarily for industrial inspections, this machine has also taken the spotlight (excuse the pun) with choreographed performances with the likes of Cirque du Soleil.

In fact, videos of Spot dancing proved so viral that Boston Dynamics produced a video to clarify that its robot is capable of much more:

THE QUADRUPED ADVANTAGE

 

Why four legs? Why not just wheels, like most mobile robotic platforms?

Good question. And we put that to InDro Robotics Account Executive Luke Corbeth.

“In most predictable environments, wheels or tracks will suffice,” he says.

“Quadrupeds excel at unpredictable terrain. You can start looking at complex infrastructure like refineries, where there might be stairs or pipes that need to be stepped over. Quadrupeds are also suitable for Search and Rescue, where there might be rubble on the ground or potentially unsafe conditions. Robots like these are very good at navigating terrain that would be impossible for a robot with wheeled or tracked locomotion.”

 

UNITREE

 

Unitree Robotics is one of a small but growing number of firms specializing in these robots. Its founder is Wang Xinxing, an engineer who started working on quadrupeds roughly a decade ago at Shanghai University. He built his first quadruped, XDog, by designing and building virtually everything, including motor drive boards, the master-slave architecture, the legs – and more.

All that hard work led to the founding of Unitree in 2016. And Wang and his team of engineers have never stopped trying to push the envelope. As the Unitree website explains, the company puts a heavy emphasis on R&D:

“Unitree attaches great importance to independent research and development and technological innovation, fully self-researching key core robot components such as motors, reducers, controllers, LiDAR and high-performance perception and motion control algorithms, integrating the entire robotics industry chain, and reaching global technological leadership in the field of quadruped robots. At present, we have applied for more than 150 domestic patents and granted more than 100 patents, and we are a national high-tech certified enterprise.”

We’re going to explore two new models from Unitree in just a moment, but it’s worth taking a look back at the early days. This video was uploaded seven years ago – after XDog was already in development for more than a year.

 

THE GO2

 

One of the new Unitree quadrupeds is the GO2. This is a step up from the GO1 EDU, which has been popular for research and development, corporate innovation parks, and even entertainment. (Yes, like Spot, the GO series can also dance – but they also do *much* more than that.)

The GO2 is a significant redesign from the GO1 series. Unitree has dropped some of the multiple cameras from the GO1 and developed its own LiDAR module, called the L1. It features a 360° x 90° hemispherical capture. With a minimal blind spot, Unitree says the GO2 is 200 per cent better at recognizing its surroundings than the GO1 series. It can detect surroundings as close as .05m away.

Because of the LiDAR, it’s obviously capable of mapping even unfamiliar surroundings and avoiding obstacles, meaning it’s perfect for Simultaneous Localization and Mapping (SLAM) applications. In conjunction with that LiDAR, the GO2 features the new NVIDIA Orin Nano for powerful onboard AI-enhanced EDGE computing

“From my experience, the LiDAR does a much better job at SLAM than the depth cameras on the previous models,” says Corbeth. “The obstacle avoidance is really good out-of-the-box and it can obviously be improved on with development (GO2 is Open Source). And the Orin is a really notable upgrade when it comes to computing power.”

 

INTERNAL AND EXTERNAL AI

 

One of the more intriguing features is that the GO2 is integrated with Chat GPT and can respond to voice commands. You could ask it to explain Einstein’s Theory of Relativity and it would speak the answer to you. More useful, though, is that you can instruct the GO2 to carry out certain tasks by voice.

“If you say: ‘Hey, go back to where I first turned you on,’ then it’s going to return home. So that’s a practical use. This is one of the first robots that can accept voice commands out-of-the-box and literally action some of those voice commands.”

You can even ask GO2, viat Chat GPT, to generate code for new tasks. Think about that for a moment.

It’s also capable of wireless charging. The GO2 can rest itself on a small optional pad and be ready for its next mission without human intervention. There’s also an option for a servo arm if a manipulator is useful for your application. It’s faster than the GO1 EDU, capable of trotting along at 5 metres/second. The GO2 also has a significantly longer run time – between two and four hours, depending on how strenuously it’s working. Battery capacity and endurance have jumped by 150 per cent compared to the previous model.

“The locomotion – their internal algorithm for how the robot moves – is much improved. So it can go faster, it’s more reliable, it’s quieter,” adds Corbeth. Firmware upgrades are OTA (over the air), with user authorisation. The GO2 connects via 4G, Wi-FI6 and Bluetooth.

Unitree Go2 Quadruped

USE-CASES

 

Though the GO2 could be used for basic industrial applications, it’s intended more for R&D and education (there’s even the option of drag-and-drop block coding). InDro Robotics is also capable of modifying the robot with our InDro Backpack – which enables data-dense 5G operation with an easy-to-use dashboard and comprehensive documentation. The Backpack also contains USB slots for additional sensors, as well as the Robot Operating System (ROS) code necessary for seamless integration.

“Anything the GO1 could do, the GO2 can do better, faster, longer,” says Corbeth.

There are even variants available – the GO2 Enterprise and GO2 Enterprise Plus – with some additional bells and whistles intended for law enforcement, Search and Rescue and other First Responder applications. Those features include dual backup communication links, a searchlight and emergency flashing lights, an additional camera and the ability for two-way voice communication.

Here’s a look at the basic GO2 in action:

THE BIG DOG

 

Unitree’s other new quadruped is the B2. It’s an incredibly powerful, enterprise-level machine that can be deployed in even the most demanding conditions. Use-cases include:

  • Industrial asset monitoring and surveillance
  • Search and Rescue/First Responder work
  • Carrying heavy payloads/cargo over even rough terrain
  • Working in water (Ingress Protection rating IP67)

Capable of moving at 6 metres per second (21.6 km/hour), Unitree says the B2 is the world’s fastest enterprise-level quadruped.

“That’s really fast – like ridiculously fast,” says InDro’s Corbeth.

“The B2 is designed less for development and more for real commercial applications. It’s also Open Source, which differentiates it from quadrupeds like Spot, or those made by Ghost Robotics,  ANYmal, etc. So we have the option to deploy proprietary software on it that we’ve built and designed, or our partners have built and designed.”

Like its predecessor the B1, the size of the B2 is striking. It weighs 60 kg and measures 1098mm x 450mm x 645mm.

B2 Robot

INDUSTRY-READY

 

Straight from the box, the B2 is ready for a variety of use-cases. With strength and endurance, this machine has been tested carrying a 45 kilogram load 7.98 kilometres on a single charge (or 20kg more than 15 km). If it’s not carrying a load, it can walk more than 20 kilometres non-stop.

The B2 can handle slopes of 45° with ease, even in rough terrain. It can even walk on greasy or oil-covered floors without falling down. (You’ll see an impressive demo involving banana peels shortly.)

Unitree has measured a 170 per cent improvement in joint performance over the B1, with 360 Nm (Newton-metres, or 265.5 foot-pounds) of torque. Run-time is vastly improved, with the B2 capable of operating between four and six hours on a mission (depending on terrain, payload and speed). The heavy-duty battery is designed for rapid swapouts, and the option of autonomous wireless charging via pad is an option.

From the factory, the B2 is equipped with a 32-wire automotive-grade LiDAR, two depth cameras, a high-resolution optical camera, and a high-capacity 45Ah (2250Wh) battery.

“And the B2 can be further customized, either directly from the factory or by InDro Robotics for specific use-case scenarios,” says Account Executive Corbeth. “We can integrate additional sensors, including thermal and even gas-detecting modules according to client needs. And, of course, we can also outfit the B2 with the InDro Robotics Backpack, which enables 5G operation and allows for rapid integration of additional sensors.”

All of those are great options to have, but Corbeth emphasizes “this quadruped is also capable of starting work straight out of the box.”

 

BUILT TOUGH

 

Make no mistake. This robot has been built to thrive in punishing conditions, including operating in water. It’s also very strong, capable of bearing a load of 120kg while standing. Control and perception are managed by multiple processors, including an NVIDIA Jetson Orin NX, three Intel Core i7s and an Intel Core i5. (These can vary if you’re looking for a custom factory build.) Plus, of course, InDro has expertise in modifying all of the Unitree quadrupeds pending client needs.

“InDro Robotics does have the ability to outfit these with any sensors that aren’t standard from Unitree,” explains Corbeth.

Plus, there’s also the option of wheels. The lower legs can be swapped out with wheeled versions. If the B2 is operating on flat terrain these are more efficient than walking.

“This option combines the best of both worlds between a legged and a wheeled robot – you get the speed and efficiency of a wheeled robot, yet with the other legs it can also climb stairs and manage rubble or other obstacles on the ground,” he adds.

And how does this new machine compare to the competition? Unitree says its measured parameters are superior – and there’s agreement from Corbeth.

“Compared with Spot, ANYmal and Ghost Robotics, I think we’re very competitive on the hardware side. I actually think Unitree has got to the point hardware-wise where it’s now superior to pretty much all the other options.”

Have a look for yourself:

INDRO’S TAKE

 

As a North American distributor for Unitree, we obviously have faith in their products. We’ve also been partnered long enough to see the company’s commitment to continuously and meticulously advancing its products. These are excellent and durable quadrupeds, as our many clients will attest.

InDro also takes pride in supplementing Unitree’s documentation to get clients up and running quickly, and on those rare occasions when something goes wrong – we know how to repair them.

“Unitree is quickly becoming a world leader in the quadruped sector,” says InDro Robotics CEO Philip Reece.

“The new models are exceptionally well-built, with significant gains in power, run-time and processing abilities. Plus, add-ons like the InDro Backpack make these quadrupeds even more versatile for virtually any use-case scenario.”

Interested? Get in touch with us HERE to arrange a demo.

TLR – Technology Readiness Levels – explained

TLR – Technology Readiness Levels – explained

By Scott Simmie

 

So: You’ve got a great idea for a new technology product or process.

That’s the first step: A concept that you’ve put some thought into. Of course, there’s a long road ahead before that brilliant idea becomes an actual commercial product. But how do you gauge that progress as you move along the development path? How would you describe where you’re at in a way that others might quickly grasp?

Luckily, there’s a tool for that. It’s called the Technology Readiness Levels scale, or TRL.

“It’s a standard measuring stick for everyone to communicate where they are with development,” explains InDro Robotics Engineering Lead Arron Griffiths.

The TRL tool was first developed by NASA researcher Stan Sadin back in 1974 with seven basic levels. It would take another 15 years before the levels were formally defined, during which time two additional levels were added. There are now nine steps up the ladder, where TRL 9 is the equivalent of a working product that could be mass-produced or commercialized.

Which means, of course, that Level 1 is at the very beginning of the technology development process.

“Level 1 is universally seen as a napkin idea – where you’ve jotted down a concept,” says Griffiths.

That’s a perfect analogy for TRL 1.

For greater clarity, each level on the scale offers a short definition, a description, and examples of activities. The short definition for Level 1 is “Basic Principles Observed and Reported.” The description is “Lowest level of technology readiness. Scientific research begins to be translated into applied research and development (R&D).”

In terms of examples, Level 1 “Activities might include theoretical studies of a technology’s basic properties.” And yes, that could include a napkin sketch.

Below: Aerospace is one of many industries to use TRLs. The noise-reducing chevron nozzles seen on the cowling below would have gone through each of the nine levels. Photo via Wikimedia Commons by John Crowley.

TRL chevrons

MOVING UP THE SCALE

 

Great! You’ve got that napkin sketch done.

Obviously there’s a lot to do between that initial idea and a finished product suitable for commercialization. To get to TRL 2, you simply need to put more thought into it. You’re not actually building or programming yet, just putting greater clarity and focus on what you hope to accomplish.

TRL 2 is defined as “Technology concept and/or application formulated.” Here’s its description:

“Invention begins. Once basic principles are observed, practical applications can be invented. Applications are speculative, and there may be no proof or detailed analysis to support the assumptions.”

You could think of this stage as refining the idea, with activities limited to research and/or analytical studies.

TRL 3 means you’re actually beginning the R&D process. This might include some lab or analytical studies. At this stage you’re trying to validate predictions you’ve made about separate elements or components of the technology. The components you’re working with aren’t yet integrated – nor is it expected that the components you’re working with are at their final version.

TWO TRL SCALES

Before we move along, it’s worth noting there are actually two different TRL scales in use. The first (and the one we’re using here) is the NASA scale. But the European Union has its own TRL scale. 

“So there is some cloudiness,” explains Griffiths. “Typically the top and bottom of the scales are the same, but the middle moves around a bit. You have to be sure people are reading from the same scale. Typically when I talk to a client, I will show them the scale I am using.”

Griffiths also emphasizes that during R&D, the phase of development doesn’t always slot neatly into one of the TRL stages. 

“It’s typical to say: ‘We’re roughly about TRL 6’ – it’s not an exact science.”

Below: The InDro Commander module, with LiDAR sensor. This popular commercial product, which allows for rapid integration of ROS-based robots and sensors (and more), is TRL 9.

Teleoperated Robots

CLIMBING THE LADDER

 

American inventor Thomas Edison once said: “Genius is one per cent inspiration and ninety-nine per cent perspiration.” The same could be said of the process of inventing a product for commercialization. Once that napkin sketch is done (the one per cent), there’s still a lot of methodical slogging ahead. (Trust us, we know.)

TRL 4 is the stage where you’re putting things together. Basic components are integrated and readied for testing in a simulated environment. The short definition, via Canada’s Department of National Defence, is “Component(s)/subsystem(s) and/or process validation in a laboratory environment.”

The logical progression continues with the next step.

“TRL 5 means it’s ready for testing in a lab environment,” explains InDro Lead Engineer Griffiths. He also adds that this middle stage – TRL 4 through 7 – “is always the difficult part.”

Once TRL 5 is passed, it’s time to start seeing if the integrated components will work together in a simulated or lab environment. At this stage, TRL 6, the product is considered to be getting pretty close to its desired configuration. Yes, there will be further tweaking to come, but you’re getting there.

Below: InDro’s Street Smart Robot (the large white unit). The product has been built but not yet deployed in winter conditions. This would be at TRL 7. Every other robot in this image would have made it to TRL 9.

 

SSR Street Smart Robot

NEARLY THERE!

 

All that hard work has been paying off. Your product is assembled and has been tested in simulation or other lab environment. Now it’s time to get it out into the real world to see how it performs. Congratulations, you’ve reached TRL 7, where “Prototype system [is] ready (form, fit, and function) for demonstration in an appropriate operational environment.”

“TRL 7 is more like a long-term deployment. Once you can show it to be working in a real-world environment – outside of the lab – then you get to Levels 8 and 9,” says Griffiths.

These final two levels are usually pretty exciting. Once the product/solution has been proven to work in its final form – and in the environment where it’s expected to be deployed as a product – you’ve reached TRL 8. Just one more to go.

 

THE FINAL LEVEL

 

Remember that Street Smart Robot you just saw a picture of? Well, it’s ready to go. And once the wintry conditions take hold in Ottawa, we’ll be operating that machine in ice and snow on Ottawa streets. Specifically, on bike lanes in Ottawa, where it will detect hazardous conditions (including potholes) that might pose challenges for safe cycling. City of Ottawa maintenance crews will then be notified of the problem (and its location) so they can address the issue. (You can read more about the SSR here.)

And once the SSR is operating smoothly in those intended conditions? We will have achieved TRL 9, meaning “Actual solution proven through successful deployment in an operational setting.”

NOT ALWAYS A SMOOTH PATH

 

It’s easy enough to describe these levels. And in doing so, it can appear to be a straightforward, linear path where engineers move seamlessly from one level to the next. Reality is not quite so simple. Depending on the project, progress in the early stages can be made very rapidly.

“Most people get up to Level 5 fairly quickly,” says Griffiths. “You can even get to Level 5 in a day if you’re doing software development – you can literally go from an idea all the way up to a basic rudimentary prototype.”

But – as flagged earlier – things get a little trickier once you hit those middle levels.

“You can think of it as walking up a hill to Level 5,” he says. “Then there’s this valley. A lot of stuff dies in Level 6 and 7. There’s not a lot of success there because once you push the technology into actual environments the success rate is very low. So a lot of time is spent in Levels 5 and 6 trying to make a system that can make it to Level 7 successfully, and then on to Level 8 – where you’re essentially across the valley.”

Below: A graphic outlines the short definitions of Technology Readiness Levels

Technology Readiness Levels

INDRO’S TAKE

 

The TRL scale is extremely useful in the R&D world, in that it concisely conveys where a product is along the path to commercial development. And while it’s great for engineers, it’s also useful to help clients understand where one of our products is along that journey.

We’ve scaled this ladder many times over the years. Sometimes it’s a relatively easy climb. But, like all Research and Development companies, we’ve also had a few products that never made it beyond the valley Arron Griffiths described. That’s R&D.

“The Technology Readiness Level scale is a really useful tool, and part of our daily language at InDro Robotics,” says CEO Philip Reece. “Each level represents unique challenges – and that valley Arron described can sometimes be a disappointing bit of landscape. But we learn something even with the occasional failure.

“Thankfully, we have a creative and tenacious engineering team that seems to thrive on difficult challenges – and InDro now has a growing stable of products that have achieved TRL 9 and gone on to commercial success.”

If you’re working on your own project and would like to know where it is on the TRL scale, you can use this assessment tool from Industry, Science and Economic Development Canada.

 

New LIMO Pro, ROS2 models bring advanced abilities to R&D

New LIMO Pro, ROS2 models bring advanced abilities to R&D

By Scott Simmie

 

There’s a new robot in town. Actually, there are two of them.

They’re small but mighty. In fact, numerous universities and robotics labs already use their predecessor for high-level research. That original robot, the AgileX LIMO, was a game-changer when it came to an affordable and flexible platform. Boston University currently has a fleet of LIMOs running custom algorithms and simulations related to how real-world autonomous vehicles will interact in the Smart Cities of the future. (It’s really cool research, and you can read all about it here.)

That first LIMO was truly a ground-breaker – and remains an excellent R&D research platform. But now, AgileX has taken things further. Two new versions of LIMO offer advanced hardware, software, runtime – and capabilities.

Below: The original LIMO that started it all…

AgileX Limo Robot

MAIN FEATURES

 

Before we get into the significant changes incorporated into the new models, it’s worth looking at some of the strong features common to all members of the LIMO family. For starters, each LIMO has four steering modes: Omnidirectional steering, tracked steering, Ackerman and four-wheel differential.

All LIMOs are equipped with obstacle detection. Multiple onboard sensors can pick up on the size, distance and location of obstacles, allowing the robot to navigate its environment without conflict. The newer LIMO models have significant enhancements here, which we’ll explore in a moment.

Despite their relatively small size – so small an untrained eye might potentially mistake them for a toy – the LIMOs feature a robust, all-metal build and powerful motor. They also feature powerful onboard EDGE computing suitable to pretty much any R&D requirements.

 

WHO USES LIMO?

 

There are really two main categories of users, with the first being those in the educational field.

“This is a great tool for anyone looking to learn ROS, because they can do all of the advanced concepts – obstacle detection, SLAM, teleoperation, to name a few,” explains Luke Corbeth, Head of InDro’s R&D Sales Division.

“And we make that really simple through our improved documentation. We’ve basically built a course around it, so it can be used for teaching students.”

The other main group of users, of course, are on the research side of things.

“It’s almost always used in labs for multi-agent systems or multiple robot projects. Because it’s multi-modal, when you’re doing a multi-agent system it can be homogenous or heterogeneous, meaning you use different steering in different robots simultaneously.”

Dimensions of all versions of LIMO are identical, as seen below.

AgileX LIMO Robot

MEET THE NEW LIMOS

 

The original LIMO is still a great robot – and is currently in use by many universities. But AgileX didn’t rest on its laurels. In response to the availability of new technologies – along with a wish-list from existing clients – the company has taken things further with its new LIMO PRO and the LIMO ROS2.

“Obviously as research in autonomy advances, so do the computational requirements,” explains Corbeth. “So it’s very important as a robotics manufacturer to stay ahead of the curve so that the hardware meets up with the current research requirements of the day.”

To that end, the new versions feature upgrades on computational power, sensors and run-time.

“The big difference is in compute – we’re moving from the Jetson Xavier to the Jetson Orin Nano on the LIMO PRO and the INTEL NUC on the LIMO ROS2. Both of these are actually massive upgrades.”

The Orin Nano is a very powerful EDGE computer. That power translates into more stable multi-sensor data fusion and speed with SLAM (Simultaneous Localization and Mapping) processing.

Speaking of SLAM, the LIMO PRO and LIMO ROS2 come with a new LiDAR unit. While the original LIMO used the very capable EAI X2L unit, the new versions come with the EAI T-mini Pro.

“Plus, the battery in the new unit goes from an hour of run-time to 2-1/2 hours – with a standby of four hours,” adds Corbeth.

 

SOFTWARE

 

Not surprisingly, the two new versions also feature some software upgrades. The LIMO PRO and ROS2 versions come with Ubuntu 20.04 (the original LIMO runs version 18.04). In terms of ROS (Robot Operating System) libraries, the first generation LIMO is outfitted with ROS1 Melodic. The LIMO PRO features both ROS1 Noetic and ROS2 Foxy. The LIMO ROS2 has ROS2 Humble onboard.

Already have some of the first-generation LIMOs in your lab? No problem.

“The new models can co-exist with the original LIMO,” says Corbeth. “And if the computing demands are higher than previous applications, it makes sense of have a blend of models.”

The graphic below outlines the feature sets of the three models:

LIMO Robot Canada

INDRO’S TAKE

 

InDro Robotics has a lot of clients who have put the original LIMO to use in labs and educational institutes across North America. Boston University has a very large fleet of LIMOs deployed – hard at work on multiple research projects related to Smart Cities and autonomous vehicles. They’ve proven to be a robust, cost-effective tool for high-level research.

And now, with the fresh release of LIMO PRO and LIMO ROS2, there are two more affordable options.

“This is a significant development for anyone looking to expand their current fleet of LIMOS, as well as those who have been waiting in the wings for an upgrade,” says Corbeth. “These are incredibly powerful and versatile robots/research tools, with the added bonus that the entire line is very affordable.”

If you’re interested in learning more, InDro Robotics is the exclusive distributor of AgileX in Canada, as well as a distributor for all of North America. We have built excellent documentation and manuals to assist users ranging from beginning to expert – and all of that added value and support comes with every purchase made through InDro.

For more information from someone who really knows their stuff, contact Luke Corbeth here.

BC’s Helijet announces purchase of eVTOL in Advanced Air Mobility milestone

BC’s Helijet announces purchase of eVTOL in Advanced Air Mobility milestone

By Scott Simmie

 

Canada has just taken a major step forward into the coming world of Advanced Air Mobility, or AAM.

Vancouver-based Helijet International, Inc. has announced the purchase of an eVTOL aircraft for crewed operations in British Columbia. The ALIA 250 eVTOL (electric Vertical Takeoff and Landing) is manufactured by US-based BETA Technologies and will bring a critical step toward sustainable passenger flight to Helijet, as well as service to additional locations.

The announcement took place at Helijet’s facility in Vancouver on October 31 and was attended by BC Premier David Eby, Helijet CEO Danny Sitnam, BETA’s Skye Carapetyan, as well as JR Hammond, the Executive Director of the Canadian Advanced Air Mobility Consortium (CAAM). Indro Robotics CEO Philip Reece was also there for the announcement, as InDro is an Industry Partner in CAAM and has partnered with Helijet on other AAM initiatives (more on that later).

“This provincial government recognizes the potential of advanced air mobility to decarbonize the aviation sector, improve regional connectivity, improve emergency response times and introduce new manufacturing opportunities in our province,” said Premier Eby. “We congratulate Helijet on their exciting news and look forward to British Columbia becoming a leader in the Advanced Air Mobility sector.”

Though the aircraft is not yet certified, flight testing in the US is well underway. BETA intends to certify the aircraft for Instrument Flight Rules (IFR) operations. Eventually, the aircraft will supplement the existing Helijet fleet – offering additional services to locations where the higher cost of traditional helicopter operations have traditionally made flights impractical.

“The introduction of eVTOL aircraft will not only enhance the passenger experience but also elevate Helijet’s capacity to provide essential services such as emergency response, air ambulance, and organ transfers,” says a news release issued by CAAM.

“This innovation is a crucial step forward in enhancing the overall well-being of communities in the Lower Mainland and remote regions.”

As an example of how the new eVTOL will help, Helijet CEO Danny Sitnam looked ahead to urgent medical deliveries between Vancouver hospitals “at a much lower cost, with no carbon footprint, and a quieter environment for the people below.”

Before we dive in, here’s a look at the aircraft. And while this graphic was created for the news release, don’t worry – the BETA ALIA 250 is very much a real machine.

 

Helijet BETA AAM

ABOUT AAM

 

You’ve perhaps heard of Advanced Air Mobility. If you haven’t, here’s a little primer.

You can think of AAM as the next evolution in air transport. We like this high-level definition from BAE Systems:

“Advanced Air Mobility (AAM) is an air transport system concept that integrates new, transformational aircraft designs and flight technologies into existing and modified airspace operations.”

Those new innovative aircraft designs will have a low carbon footprint, and generally fall within these three design categories:

  • Electric Vertical Take-off and Landing (eVTOL). You can think here of air taxis, patient transfers, cross-town trips in dense urban areas, and more. These machines will take off and land from Vertiports, which have a small footprint advantageous to urban centres
  • Electric Conventional Take-Off & Landing (eCTOL). These would be electrified or hybrid fixed-wing aircraft that still require runways but are more efficient to operate (and much greener) than conventional aircraft. Likely used for short trips, carrying passengers and cargo from regional and rural locations.
  • Small Unmanned Aircraft Systems (sUAS). You can think here of drones, or Uncrewed Aerial Vehicles (UAVs). These will be commonplace delivering critical goods and medical supplies, both within urban centres and to nearby communities. They will share controlled airspace with other traditional aircraft, though their operations will likely be restricted to designated flight corridors to avoid any conflict.

Initially, the transition to the world of AAM will involve crewed aircraft in the eVTOL and eCTOL space. In other words, there will be a human being piloting those aircraft. As the system and technologies advance, however, automation will take on a greater role, Pilots will be on board monitoring those autonomous flights, until a stage is reached where the flights are fully autonomous.

That’s a ways down the road. But the gears of this machinery are very much in motion. The FAA already has a blueprint for AAM and flight corridors. A large number of companies are working on new and innovative aircraft designs utilising electric, hybrid and hydrogen fuel-cell propulsion. And the Canadian Advanced Air Mobility Consortium (CAAM) is working closely with regulators and the industry to advance the transition.

Speaking of CAAM, we also like its AAM definition:

“Advanced Air Mobility (AAM) is the evolution of air transportation created by an ecosystem of new technologies allowing people, goods, and services to move within urban and regional areas safely.”

And let’s not forget about the low carbon footprint. That’s also a big part of this revolution. Canada (and many other countries) have committed to Net Zero carbon emissions by the year 2050. That means our economy is expected to achieve that goal either by switching to technologies that emit no greenhouse gas emissions – or activities that offset those emissions (such as tree planting).

And while long-range passenger jets pose a greater technological challenge when it comes to electrification or hybrid power sources, there’s a lot of air traffic in urban areas. Plus, the use of green aircraft for goods delivery reduces the reliance on internal combustion-based ground vehicles. InDro Robotics, for example, has flown COVID test supplies from remote island communities by drone, as well as prescription medications to isolated communities. These deliveries would have traditionally relied on ground transport and ferries.

If you’re interested in learning more about AAM, we’ve written a pretty extensive primer here.

Now let’s get back to Helijet.

Below: The BETA ALIA 250 in a hover test:

BETA ALIA

THE BETA ALIA 250

 

BETA is building two aircraft: The eVTOL purchased by Helijet, as well as a cTOL – an electric, fixed-wing aircraft that requires a runway. Both employ a patented electric propulsion system and utilise batteries with a high energy density. They also each have a wingspan of just over 15 metres (50 feet) and can carry five passengers (or equivalent cargo) plus a pilot.

BETA started with a small but highly committed team. In less than 10 months, its first full-scale prototype, AVA, went from the drawing board to crewed test flights. Since then, BETA has grown considerably and received significant investment. In 2019, it began work on the ALIA aircraft. The company says its design was inspired by the Arctic Tern; engineers say biomimicry played a role in the design of the aircraft’s wings and long sweeping tail.

While BETA partnered with many suppliers for components of the aircraft, the company developed its own proprietary electric motor (no small feat). In 2021, ALIA flew its maiden crewed flight.

It wasn’t long before the design started catching the attention of others. UPS ordered 10 ALIA aircraft – and reserved 140 more. The US Air Force was impressed enough that it issued a special Military Flight Release. This allowed the company to carry out experimental flights with the Air Force. BETA also closed a $368M Series A funding round; Amazon’s Climate Pledge Fund was one of the investors. So the company has been on an impressive trajectory.

The company builds its own charging cubes, which will be installed much like Tesla chargers. In fact, the ALIA cTOL flew 2400 miles (3840 km) over seven states in 2022, with the longest leg just shy of 300 miles (480 km). It stopped to charge on the company’s own infrastructure charging network. Down the road, you can picture some of these charging cubes at destinations the eVTOL will serve for Helijet. Those destinations won’t require runways or traditional aviation fuel.

Below: An ALIA cTOL gets some juice from the BETA charging cube:

 

 

 

BETA ALIA Helijet

THE NEXT GENERATION

 

The BETA ALIA eVTOL won’t be making its appearance with Helijet next week, next month – or even next year. There’s still the lengthy certification process to go before the aircraft can be put into commercial use.

But the announcement is still highly significant. It signals a commitment on the part of Helijet, CAAM, and the Government of British Columbia toward a low-carbon AAM world. It will open the door to servicing communities that currently do not have an affordable option for air transportation or deliveries.

And, according to BC Premier Eby, it’s a perfect fit for the province.

“British Columbia – we’re a quiet champion when it comes to the aerospace industry. One of Kelowna’s biggest employers, KF Aerospace, is obviously in the industry. We also have Cascade Aerospace out in Abbotsford – the biggest employer in the valley. And we have companies like InDro Robotics – and the CEO is here today – using large drones to deliver to remote and rural First Nations Communities out of Vancouver.”

And while Helijet’s new purchase won’t be in service for the immediate future – it’s definitely going to happen. And that’s a very big deal.

“We will soon gather again to celebrate the inaugural flight of the ALIA 250 eVTOL aircraft with Helijet,” said JR Hammond, Executive Director of CAAM. “And that day will make another historic milestone on our journey towards an interconnected aviation ecosystem.” 

Helijet started 37 years ago with a single helicopter and a handful of employees; it’s now North America’s largest scheduled helicopter airline. Company President and CEO Danny Sitman says this is a natural evolution.

“We were disrupting aviation 37 years ago…Today marks another significant milestone, not just for us but for all British Columbians… We have made a firm order for four aircraft at this time, with an option for four more. It’s an exciting time for aviation right now.”

And it is.

Below: The BETA ALIA cTOL in flight

BETA ALIA Helijet

INDRO’S TAKE

 

InDro Robotics has a vested interest in the coming world of Advanced Air Mobility. We have carried out multiple missions, pilot projects and research tests related to this next phase in aviation. In fact, one of them has been in conjunction with Helijet.

InDro recently flew from Helijet’s Vancouver Harbour facility, piloting our drone through a flight corridor designed to virtually eliminate any potential conflict with crewed aviation – while still flying in a dense urban centre with regular air traffic.

We also used that flight to map the strength of 5G cellular signals at different altitudes – data that will be useful in the coming AAM world of automated BVLOS drone flights. We have also long been committed to sustainable, low-carbon footprint technologies.

“We’re pleased to see Helijet take the lead by committing to a sustainable, passenger-carrying eVTOL,” says InDro Robotics CEO Philip Reece. “We are truly on the cusp of a transformative phase in aviation, and we applaud Helijet, CAAM and BETA on today’s important announcement. I look forward to a flight in the ALIA when it enters service here in BC.”

Indro Robotics builds Street Smart Inspection Robot for safe cycling in winter

Indro Robotics builds Street Smart Inspection Robot for safe cycling in winter

By Scott Simmie

 

The safety of pedestrians and cyclists is important in any major city.

Bike lanes and crosswalks are the most obvious signs that we create infrastructure for this purpose. But there are limits to what that infrastructure can do.

Winter, for example, creates additional threats. Ice and snow are the most obvious problems, but potholes and deep puddles can also cause havoc – particularly for cyclists. Snow can accumulate quickly in a storm – and it’s not uncommon for snow plowed from the roadway to sometimes spill over into bike lanes (and even on sidewalks).

That’s part of the reason why Indro Robotics has built an innovative solution that will be put to the test this winter. It’s called the Street Smart Robot, or SSR – and it’s been designed from the ground up to help ensure safe winter cycling.

Below: A Wikimedia Commons image, taken in Whitehorse by Anthony DeLorenzo. Cyclists in Canada are a hardy bunch.

SSR Winter cyclist

STREET SMART ROBOT

 

The catalyst for the SSR is a research and development partnership fund called the Wintertech Development Program. According to the program website, Wintertech “supports Ontario small and medium enterprises (SMEs) and their partners to validate, test, prototype, and demonstrate new products and technologies designed to meet the unique demands of winter weather conditions.”

Wintertech is run by OVIN, the Ontario Vehicle Innovation Network. That’s a province of Ontario initiative which “capitalizes on the economic potential of advanced automotive technologies and smart mobility solutions such as connected and autonomous vehicles (CAVs), and electric and low-carbon vehicle technologies, while enabling the province’s transportation and infrastructure networks to plan for and adapt to this evolution.”

And while bicycles aren’t connected and autonomous vehicles (at least yet), we felt robotics could play a role in helping to ensure the safety of cyclists in the Smart City of the future. Specifically, we thought an autonomous robot equipped with the right sensors and processing might help to detect safety issues in bike lanes in the winter.

“The idea behind the robot is we want to prolong the use of bike lanes in Ottawa, but also ensure the safety of bike lanes in Ottawa,” explains Indro Robotics Account Executive Luke Corbeth.

“There’s really two parts to this: The first is a machine vision element to see if conditions are good enough for biking – no ice, not too many leaves, etc. On the safety side, the Street Smart Robot is more concerned with detecting things like potholes and cracks. And the idea is if you’re able to identify those things, the right resources can be deployed faster and more efficiently to solve the problem in a timely manner.”

So that’s the idea behind the SSR. Now, let’s take a look at the technology.

Below: A look at the specs of the AgileX Bunker Pro platform. We’ve upgraded the battery for a four-hour run time:

Bunker Pro Robot

BUILT TOUGH

 

If you’re going to be out and about in an Ottawa winter – where temperatures have reached as low as -33°C – you need a platform suitable for the environment. InDro selected the AgileX Bunker Pro as the starting point.

With an IP67 Ingress Protection rating, the Bunker Pro is highly impervious to water and particulate matter – which it will encounter in abundance on Ottawa streets. The treads give an edge over wheels when it comes to navigating over ice, snow and potholes. With a full charge, the platform can run for some four hours – even when it’s cold out.

But the platform is just the start. InDro engineers had to put considerable thought into the kinds of sensors that would help the Street Smart Robot carry out its task while safely avoiding cyclists, pedestrians, or other obstacles it might encounter. And that began with four wide-angle pinhole cameras.

“The pinholes are just to give the operator a better understanding of their environment and situational awareness,” explains Corbeth. And while we say “operator” here, it might be more appropriate to say “observer.” Though initial deployments will involve teleoperation, the SSR has been built to carry out its tasks autonomously. We anticipate that down the road (or bike path), a person will simply be involved in monitoring missions in case human intervention is required.

That autonomy will be carried out by a combination of computing power, our InDro Autonomy software stack, and a plethora of sensors.

 

SENSORS, SENSORS, SENSORS

 

The Street Smart Robot is equipped with front- and rear-facing depth cameras. These cameras have two visual sensors each, placed roughly the same distance apart as human eyes. That separation – as in human vision – allows the SSR to perceive the world in depth. Onboard computation (we’ll get to that) calculates how far obstacles might be in the robot’s immediate surroundings, and whether it needs to slow down, stop or change course to avoid obstacles.

The depth cameras are supplemented by two 270° 2D LiDAR sensors – which are devoted almost exclusively to obstacle avoidance and safety. There are two additional 3D LiDARS, placed to assist with Simultaneous Localization and Mapping, as well as a GPS and IMU (Inertial Measurement Unit). There’s even a Range Finder that can detect how far an object is off the ground.

“If you have an overhanging tree branch, for example, you could see where it is and see if it obscures the bike lane,” says Corbeth. “We’ve never used a Range Finder before, but could see it would be useful in this application.”

In addition, there’s a thermal/30X optical Pan-Tilt-Zoom camera, complete with a windshield wiper for those sloppy days.

Below: Check out what the SSR has on board.

Inspection Robot

SENSING, AND MAKING SENSE OF, ITS ENVIRONMENT

 

All of those sensors are great. But they don’t do a lot on their own. They require software and computational power to give their data meaning. Here, the SSR has a Jetson ORIN AGX for EDGE computing. The ROS2 operating system software lives onboard in InDro Commander – a module we’ve created for rapid integration of sensors and 5G remote operations. Commander can be thought of as the glue that holds everything together.

But still, there’s the issue of making sense of the data. How will the Street Smart Robot identify ice, water, leaves, snow, potholes, debris etc? And how will it determine whether they are significant enough to require a City of Ottawa maintenance crew to take action?

Here, the SSR will be going to school. And by that, we mean a combination of Machine Vision and Machine Learning will teach it what’s worth reporting and what isn’t. One way is to take actual images you expect to see on the bike path and identify which ones are significant and which can be ignored.

“For example, you could mount a camera on an actual bicycle and then use that dataset to train the robot,” says Corbeth. “But there are a couple of approaches. There’s also obviously the simulation element. You can use specific engines that have high-fidelity graphics to simulate possible different environments in high resolution. And you can use that simulated data for training.”

 

THEN WHAT?

 

In the early stages, there will be a human operator at the helm. They’ll likely see some of those obstacles with the pinhole cameras, but from the start we anticipate that the onboard AI will trigger an alert for the operator. Once the operator confirms that the image is worthy of the attention of a maintenance crew, they will contact the city directly.

That’s how things will start. Once we’ve established a high confidence level that the Machine Vision is correctly identifying anomalies, that process can be automated. The SSR will be programmed to automatically send an alert to the city, complete with a captured image of the potential problem and GPS coordinates.

“It’s the idea of anomaly detection – detecting and flagging anomalies. The SSR will also likely be able to identify the severity of the anomaly on a one-to-five scale. And because you have the GPS onboard, the exact location of the problem can be relayed to the city.”

Below: The SSR, during its public unveiling at the TCXpo exhibition in June. Front and rear view, to show off all its bits…

 

Street Smart Robot

ON THE SHOULDERS OF SENTINEL

 

Every technical achievement owes something to its predecessors. And that’s no different with the Street Smart Robot.

InDro Robotics previously built Sentinel, a workhorse for remote asset inspection. That robot incorporated an AgileX Bunker platform, an InDro Commander integration module for sensors and remote teleoperations, and several other sensors. It’s a great robot that has proven itself in the most demanding conditions.

The Street Smart Robot builds on the success and learnings of Sentinel with additional compute power, many more sensors, a more robust design and extended operational range. And that opens the SSR up to many other tasks beyond bicycle paths.

“That’s what really excites me about this project – the idea that this technology is transferable across other inspection verticals,” says Corbeth. “This particular robot could be used in agriculture, and the track platform is really good in mining. I could envision this exact same robot in those two verticals, and others.”

 

THE 5G CONNECTION

 

When dealing with multiple sensors in real-time, a solid data bandwidth is crucial. Here, SSR is outfitted with a high-speed modem and special antennaes for optimizing 5G and 4G signals. And while the Street Smart Robot can be operated over 4G, it’s 5G that offers the pipeline necessary for the data to really flow. InDro’s continuing partnership with Rogers will ensure that the SSR has access to Canada’s largest and most reliable 5G network.

Both InDro and Rogers are contributing a significant amount of development money as part of the OVIN Wintertech program. The total value of the project is estimated at $1,395,000. InDro Robotics and Rogers Communications are contributing twothirds of the total project value ($780,000 and $150,000). Support from the Government of Ontario, through OVIN, totals $465,000 or one-third of the project. 

Below: Innovations in the InDro Sentinel paved the way for the Street Smart Robot. This image was taken at the opening of the Drone and Advanced Robot Training and Testing facility (DARTT) in June of 2023. That’s Luke Corbeth holding the microphone.

Sentinel water DARTT

INDRO’S TAKE

 

We’re pretty excited about the SSR. As Luke Corbeth says: “It’s a bad-ass robot.”

And it is. But we’re also excited about the project itself.

The Smart City of the future will have connected, embedded sensors (including on robots) helping with everything from traffic flow to updated weather and road conditions. Cyclists are a big part of any major urban centre, and the prospect of helping to ensure their safety appeals to us. It’s also an opportunity to really hone in on Machine Vision and Machine Learning as InDro trains the SSR for its task.

“Smart Cities are on their way, and it’s great to be involved in yet another project as we build the capacity for the future,” says InDro Robotics CEO Philip Reece.

“The Street Smart Robot has an important role to play, and could well be the template for anomaly detection and road maintenance at scale in the future. We’re grateful to OVIN and its Wintertech program for selecting this project for development; we’re excited to see what the SSR can do.”

InDro plans to start testing the SSR during the winter, with the project stretching to June of 2024. We’ll be writing more once the robot hits the bike paths.

Indro Robotics takes in IROS 2023 in Detroit

Indro Robotics takes in IROS 2023 in Detroit

By Scott Simmie

 

One of the most important gatherings in the field of robotics is underway in Detroit.

It’s the International Conference on Intelligent Robots and Systems, or IROS 2023. And InDro Robotics is there.

“IROS is kind of an open forum to discuss research in the fields of mobile robotics, manipulation and so much more,” says Account Executive Luke Corbeth. “It gives researchers the ability to collaborate with each other, as well as industry, through the exhibits.”

Or, as the conference describes itself: “IROS is a large and impactful forum for the international robotics research community to explore the frontier of science and technology in intelligent robots and smart machines, emphasising future directions and the latest approaches, designs and outcomes.”

There’s plenty to see (and learn). You’ll find robotic arms and hands – some with incredible dexterity. There are quadrupeds, bipeds, specialised sensors – even a race course where teams put small but fast autonomous racers against one another. Plus, of course, scores of seminars and poster exhibits highlighting new and important research in fields ranging from AI to remote microsurgery.

“Everyone who is working on the cutting edge of robotics comes to IROS to present their research,” says Corbeth.

Some of the best minds in the field – including Masters and PhD students from many parts of the world – come to learn, network and share. Even Amazon is here, specifically to hire people to design, build and operate new robots for its warehouses. So too is the Honda Research Institute.

WHAT IS ROS?

 

Though IROS stands for Intelligent Robots and Systems, “ROS” has another relevant meaning. In the industry, it stands for Robot Operating System. As ros.org describes it, ROS “is a set of software libraries and tools that help you build robot applications.”

These libraries and developer tools include state-of-the-art Open Source algorithms that are shared with developers around the planet. The original toolkit is known as ROS1, while the newer ROS2 has more robust security protocols and is being embraced at the corporate and industrial levels.

“Generally what is being built here is being built on ROS,” explains InDro Vice President Peter King. He goes on to explain that you can think of ROS as a facilitator that brings all the different parts of a robot – including different sensors and coding – together.

“ROS is language-agnostic,” says King. “You can bring in Python, you can bring in C++, you can bring in other sensors. ROS allows all of the packages to talk to each other.”

In some ways, that’s also what InDro Robotics does. As both a research and development company and an integrator, InDro frequently brings together disparate parts for a common purpose – most often, for special projects for clients.

“Everybody here is actually the perfect client for InDro,” says King. 

“Imagine you were studying autonomy and perception and you’re going to do this in ROS. These students and universities don’t have the budget or hardware or time to build what they need. So we can build a custom robot, generally outfitted with InDro Commander, so they can focus on simply coding their project.”

“It’s a very big international community – which I was not expecting,” adds Account Executive Amanda Gloor. “Plus, it’s great to see people showcasing technology from all over the world. One of the cooler things I saw was a robot that climbs storage tanks using magnets – then uses non-destructive testing to detect corrosion.”

Below: InDro Account Executive Amanda Gloor gets the Unitree GO2, which InDro distributes, to take a leap

POSTER EXHIBITS

 

If you’ve got the time (and the brains), the rotating poster exhibits are fascinating to dip into. There are some 1200 exhibitors either displaying their research or holding seminars. Some of that research could be the Next Big Thing, or a significant incremental advance that will be utilised in other applications.

A quick spin through just a few of the exhibits, during a session devoted to healthcare, revealed the following topics:

  • A shared autonomous nursing robot assistant with dynamic workspace for versatile mobile manipulation
  • Magnetic, modular, undulatory robot: Exploring fish-inspired swimming for advanced underwater locomotion and robotics
  • Contactless weight estimation of human body and body parts for safe robotics-assisted casualty extraction

As you can see, some are highly specialised. Now think of hundreds (and hundreds) of such research papers, each making a small (or even large) contribution to pushing the robotics envelope. That’s IROS.

But while such important niche research was in abundance, there was also a sense that the Big Picture moving forward involves AI. While that’s always been a part of the robotics world, recent advances in artificial intelligence, machine learning and machine vision took centre stage. Many of the keynotes – and smaller learning sessions – focussed on AI.

Wednesday’s plenary session, for example, was “Merging Paths: The shared history and convergent future of AI and Robotics.” One of the keynotes was “Deep predictive learning in Robotics: Optimizing models for adaptive perception and action” – followed by: “Empowering robots with continuous space and time representations.” Those are in addition to scores of separate sessions during the conference with an emphasis on AI. 

Instead of robots simply being aware of their surroundings and tasks, we appear to be heading into a world where these machines more fully understand the world around them, and make decisions based on that understanding. And that feels like a very big deal.

 

 

INDRO’S TAKE

 

There are always conferences going on in the robotics and UAV sectors. We could choose to attend all of them, but we tend to be selective.

For the academic and R&D world, IROS is the venue where we can learn about the latest cutting-edge research and technology – and display our own innovations (such as our new ROS-based indoor UAV, which has been gaining a lot of attention). So it’s good to be here again.

“The unique thing about InDro is our ability to have a conversation with virtually everyone at this conference,” says Luke Corbeth. “Given the scope of our work – whether it’s a new platform, or sensors, integration or production, there’s always some way we can be of value to those across the R&D community.”

It’s also a great place to meet the next generation of engineers and other specialists, some of whom may one day join the growing InDro team.