InDro launches monthly newsletter

InDro launches monthly newsletter

A word (or two) from InDro Robotics

 

Welcome to the first in a new series of monthly newsletters from the InDro Robotics team!

These newsletters will cover the latest news from InDro Robotics – including the inside story from our R&D facilities (at least the stuff we can tell you about!).

First up? The big news: We have officially released the new InDro “Commander” – a module that vastly simplifies the challenges of building and customizing a teleoperated UGV. Commander is about the size of a small toaster oven. It bolts onto any platform and simply connects with two wires for power.

But don’t let that simplicity fool you: This is one mighty box, containing not only an NVIDIA processor for Edge computing, but high-speed USB ports for sensor management. Just as importantly, it contains the Robot Operating System (ROS) libraries required to make everything work together.

You might have seen our news release announcing the product. If not, here’s a teaser:

InDro Robotics

(You can find the entire release, which includes links to images, a video and a complete story on the product, right here.)

“The product also leads the way with a unique feature for developers: It is a platform agnostic solution – meaning that it can work with any platform that developers need,” explains Anthony Guolla, a robotics engineer specializing in Client Sales and Support. 

“Whether your platform of choice is AgileX Robotics or any other major provider, The InDro Commander has your hardware, computer, and integration covered. InDro and our partners have already taken large strides in deploying real-world solutions accelerated by Commander and we are excited to share it with the rest of the world in 2022!” 

InDro Commander

Commander and Sentinel

 

If you’ve had a chance to read the release, you’ll know Commander evolved organically from our own work designing robots for clients and for R&D. Every time we went to integrate sensors and make the robot operational, we were running into common but time-consuming steps: Finding power for the sensors, installing Robot Operating System (ROS) software, and generally making the whole package work. (Trust us, there are a *lot* of steps involved.) 

Commander has been designed to eliminate the painstaking stuff, allowing you to quickly add the sensors of your choice and operate the robot using our web-based console. 

It has also allowed us to rapidly iterate new machines, and we’re particularly proud of a Commander-powered robot we call “Sentinel.”

 

Inspections, simplified

Inspection Robot

Sentinel is a purpose-built inspection and surveillance robot, ideally suited to applications like electrical substations. These are the places where the high-voltage power carried by transmission lines is stepped-down for delivery from the substation to homes and other customers. Such facilities are often located in remote areas, difficult to reach for regular inspections by human beings.

“Right now, highly trained technicians make lengthy journeys between sites and frequently arrive without the proper resources to solve the problem on-hand,” explains InDro Account Executive Luke Corbeth.

“Seldom are these inspections, which include meter reading, temperature control and checking equipment conditions, done as frequently as they could be. Without sufficient maintenance, equipment will fail and result in an outage, which is financially detrimental to business and inconvenient for consumers.”

With Sentinel, regular inspections can be carried out remotely by a human operator who is hundreds, even thousands of kilometres away via the internet. Using Sentinel’s Pan-Tilt-Zoom camera (with 20x optical zoom and thermal sensor), the operator can check out even the tiniest detail from afar.

Check out this image, taken from the web-based Sentinel Console:

Inspection Robot

Potential clients who have been given a sneak preview are impressed.

“We’ve received an overwhelmingly positive response from partners and utility companies for this solution. As a result, we’re making it a priority to deploy more of this technology across North America in 2022,” says Corbeth.

Sentinel can be deployed on a number of platforms, depending on the terrain and user requirements. Our first Sentinel is based on the AgileX Bunker platform. We selected Bunker because it’s rugged and nearly impervious to inclement weather. The track-based locomotion system handles well in snow, mud and other challenging conditions and terrain. But Sentinel is also offered with wheels, and even quadripedal or other form factors.

If you’re interested in learning more about Sentinel’s capabilities, hit us up here.

Learning

 

InDro Robotics has long been a champion of quality instruction when it comes to drones. We believe in ensuring that prospective pilots have access to the very highest quality learning materials and methods, with Subject Matter Experts leading the way. We also believe in community, where those following a learning path can learn from, inspire, and support one another.

That’s why we’re particularly excited about an initiative we’re launching led by Kate Klassen. Kate, as you might already know, is a seasoned veteran of both crewed aviation and UAVs. She was a driving force behind the excellent educational work carried out by Coastal Drones – and is a member of the Canadian Drone Advisory Committee, also known as CanaDAC.

If you’re interested in obtaining your Remotely Piloted Aircraft Certificate, you can sign up here. (And, trust us on this, there’s much more to come!)

Drone Training

“I am so excited to be back in the instructor seat with new, up-to-date training to share with the industry,” says Klassen.

“Already this year we’ve launched ground school for basic pilots, updated our advanced ground school, have the first in a series of ‘Flyy Guides’ published and are creating a community space for more casual learning and sharing with others in the industry. And this is just us getting started!”

From the top

Finally, a word from CEO Philip Reece.

“This is going to be a very exciting year at InDro Robotics. Commander is a hugely innovative solution to the hard work of building robots – and end-users have already seen tremendous efficiencies. Sentinel takes full advantage of the Commander module, meaning clients now have access to a proven teleoperated inspection solution that can be quickly modified with additional sensors and capabilities down the road. I’m immensely proud of the work InDro’s engineers have put into these solutions.

Wait, there’s more!

“InDro is also pleased about Kate’s forthcoming community platform, which will complement our learning portal. She is a total professional, and the hard work she has been putting in reflects this. I don’t want to give too much away, but let’s just say we look forward to formally unveiling the full platform shortly.”

Give us a shout

Questions? Comments? We’re always happy to answer queries and read feedback. Hit us up here.

If you enjoyed reading this InDro Robotics news and would like to receive these bulletins automatically, click here. (Don’t worry, we only send these once a month.)

InDro Robotics “Sentinel”

InDro Robotics “Sentinel”

By Scott Simmie, InDro Robotics

Imagine, for a moment, the challenges of owning and maintaining a remote asset. Further picture that it’s, say, an unstaffed electrical substation located some 800 kilometres from your base of operations. The area is prone to fog, rain and snow. To top things off, the last 200 kilometres consist of a washboard gravel road. There are no hotels or other accommodation nearby.

Keeping a watchful eye on such a facility poses challenges.

 

The old way…

 

Companies have traditionally relied on one of two methods – or a combination of both – to monitor remote assets. The most common solution has been to install security cameras and motion sensors and simply keep an eye on monitors. In addition, companies often dispatch employees for occasional inspections.

Unfortunately, fog and rain often mean the security cameras can’t get a clear picture. Even on a decent day, these cameras can’t get up close and personal to truly inspect the assets and determine whether maintenance might be required. Dispatching an employee costs time and money – and isn’t something you can afford to do on a frequent basis.

But you also can’t afford to to not know what’s happening. After all, it’s an expensive and critical asset. If only there was a way to have boots on the ground…without actually dispatching an employee.

It’s precisely this kind of scenario – as well as many others – that has led InDro Robotics to create a solution. It’s a ground-based, all-terrain/all-weather robot designed from the ground-up to allow easy monitoring anywhere, anytime – and all from the comfort of your base of operations.

 

InDro Robotics “Sentinel”

 

That’s it – right there in the picture below. Now let us tell you why we’re so excited about this product.

 

InDro Robotics Sentinel

A workhorse

 

Sentinel is built on the rugged AgileX Bunker platform. The weather-resistant Bunker has a range of 10 kilometres and can take on pretty much any terrain. Its track system features differential rotation, allowing the operator to get up close and personal with any asset – all without leaving the office.

But that’s just the beginning. Sentinel is packed with features that allow for easy collection of meaningful data, including:

 

  • 20x optical zoom for detailed inspection
  • Radiometric thermal imaging to detect anomalies
  • 4G/5G connectivity for remote teleoperation
  • Web-based console and cloud storage for operations and data

Sentinel is also simple to operate. Using an intuitive handheld controller, the operator has full control over Sentinel’s operations while watching a real-time live video stream from the robot’s RGB and thermal sensors. The display includes data on battery reserves, CPU usage, GPS location and more.

We’ve pulled together a brief video to give you a better sense of what it can do:

A deeper technical dive

 

What helps pull all of these abilities together is another InDro innovation. It’s a box that contains the brains and sensor/data interfaces that make Sentinel so easy to use. That box contains an onboard EDGE computing device utilizing a Jetson NVIDIA processor, and also the industry-standard Robot Operating System (ROS) software required for the various sensors. We call this solution InDro Commander, and you can read about it here.

You could think of Commander as kind of like a symphony conducter, bringing all the various elements together in a synergic fashion. And yes, there are plenty of key elements, including a wiper for the 20x optical camera – even a thermal defogging component for the lens.

All of this – and more – in a package that’s nearly impervious to the elements.

The robot, and its ‘doghouse’ are IP67 rated, meaning they’re protected from contact with harmful dust, sand, ice shards, hail, rain and water sprays,” explains InDro Account Executive Luke Corbeth.

“Once returning home, the ground vehicle comes in contact with the charging pad and is wirelessly fast charged. This means that Sentinel can withstand many environmental conditions with minimal maintenance required. With that said, should it need maintenance it has a modular design so unlike other UGVs, the brains are separate from the body. As a result, if a component malfunctions we can simply replace it with a new one and bring the damaged one in for repairs to reduce on-site downtime.”

The secure, browser-based operations console is a snap to learn and provides live data while Sentinel is being operated. Whether it’s monitoring for intruders or checking the temperature of assets for preventative maintenance, Sentinel has you covered. Check out the zoom capabilities in the screengrabs below: 

Inspection Robot
Inspection Robot

Sentinel is up for the task(s)

Though we’ve focussed on inspection – there are many different kinds of inspection for which Sentinel is well-suited. These include:

Operational rounds

Also known as preventative maintenance, these kind of inspections are designed to identify potential problems before they become serious. Here, both optical and thermal data can plan key roles. The ability to identify anomalies before they become problematic can be accomplished through regularly scheduled tasks and data analytics.

Emergency Response

Emergencies, by their very nature, are unpredictable. They tend to happen quickly and without warning. The ability to respond to emergencies depends both on a response plan and the ability to obtain situational awareness as rapidly as possible. Sentinel is built to withstand hazardous environments and provide treads on the ground immediately – regardless of how remote your operation is. (And yes, this robust device is also suitable for First Responders.)

Security monitoring

“Maintaining the security of critical infrastructure is vital to minimizing downtime, customer attrition, reputation loss and compliance costs,” explains InDro’s Luke Corbeth. 

Sentinel can not only keep a regular watchful eye using its RGB Tilt-Pan-Zoom camera, but also has the added benefit of radiometric thermal imaging. In this example, an intruder is quickly detected by their heat signature. And while this was shot during daylight hours, there’s no such thing as the “cover of night” when using thermal sensors:

 

Inspection Robot

Built for the future

 

While many users will want to dispatch Sentinel using a human operator, the robot can also be programmed for scheduled missions using a pre-planned path. Whether its once a week or twice a day, Sentinel can carry out these missions with no human intervention. And that’s just the beginning.

“With InDro Commander and the Jetson onboard, Sentinel has the ability to learn change detection and obstacle avoidance,” says InDro Robotics CEO Philip Reece. “And with the addition of a LiDAR sensor, this machine could even carry out SLAM (Simultaneous Localization and Mapping) missions in unfamiliar environments.”

It also has some distinct advantages over a UAV, says Reece.

“Drones are great in certain situations, but regulatory permissions for Beyond Visual Line of Sight operations are not easy for companies to obtain. Sentinel does not require a permit and is easy to operate. Plus, with its optical zoom and thermal capabilities, this robot makes it simple to acquire detailed data of any asset visible from the ground.”

InDro Robotics is now taking orders for Sentinel – and even arranging remote “test-drives” for prospective clients. You can contact Luke Corbeth for more information here.

Skygauge and the rise of task-specific drones

Skygauge and the rise of task-specific drones

Today, we take a dive into a pretty cool drone company.

That company is Skygauge Robotics. It’s a Canadian firm featuring an innovative drone design purpose-built for highly specialized inspections. It’s unconventional and breaks the traditional quadcopter mold.

And what is that mold? Four fixed motors, four fixed rotors – and a common sensor.

 

Tried and true…

 

With rare exceptions – such as fixed-wing drones and fixed-wing VTOLs for longer-range missions – most drones are variations on the above theme. The quad-rotor design has become the industry workhorse, and rightfully so. Quad-copters (or X8 configurations) are reliable, maneuverable, and they get most jobs done. The main differentiator between these drones, when it comes to use-case scenarios, has been sensors/payload.

End-users tend to either purchase drones with the sensors needed for the job or get a machine that allows you to swap payloads.

For a recreational pilot, that sensor is nearly always a camera. First Responders often want drones with thermal capabilities, allowing them to assess fires or search for missing persons (particularly at night) by identifying their heat signature. Other end-users might require LiDAR, precision agriculture sensors – even molecular sniffers that can detect gas leaks, the presence of toxic chemicals or measure overall air quality. Plus, of course, some operators simply want to move goods, meaning the payload is the cargo itself (though always with a camera).

All good, right? Well, to a point.

Though there’s been a rapid growth in sensors, there are some jobs for which the standard quadcopter design simply isn’t well-suited. Tasks like inspecting ductwork, chimneys, the interior of large pipes or other confined spaces are generally not a great fit for quads. Identifying that shortfall is what led Flyability to create the ground-breaking Elios (and now, Elios 2) drone.

Though technically still a quad, the Elios flies within its own collision-resistant cage, allowing it to go places where other drones cannot. If you haven’t seen it before, check out the video.

Specialized drone designs

 

The point is that, in addition to new sensors, we’re now seeing the development of highly specialized drones for specific applications. The UK firm HausBots is another company with a very different spin on traditional drone design. Its machine can seemingly defy gravity by “sticking” to walls as it climbs them using wheels. It uses rotors to create the pressure differential necessary for it to be held against the wall.

HausBots are being used for visual inspection, Non-Destructive Testing – even tasks like painting. As you’ll see, it gets up close and personal with the surface in a way that would not be possible with a standard quadcopter design:

 

Skygauge Robotics

 

With that context out of the way, we wanted to introduce you to an innovative Canadian company called Skygauge Robotics. It has created a very unique drone intended for very specific applications. Its design is unlike anything else we’ve seen.

And why is that? Well, the motors (and protected rotors) can be vectored to direct thrust. This allows the drone to be positioned in ways that would be impossible with a standard quadcopter design. Instead of simply hovering parallel to the ground, the Skygauge machine can vector its eight motors to allow the drone to hold its position (or maneuvre) while the entire machine is at a pilot-defined angle. This can include even contact with the surface of a structure while remaining in hover.

Before we get into why that matters, just take a look at this short video from Skygauge. Though it has eight motors, this is definitely not a traditional drone design.

The drone reinvented

 

We’ve borrowed that headline from the Skygauge website, along with this definition: “The Skygauge uses patented thrust-vectoring technologyto achieve the most stable and precise flight of any drone yet, making it ideal for carrying out industrial work.”

And, says Skygauge, this design is perfectly suited to a specific type of application: Ultrasonic testing, which requires a probe to make contact with the surface of the object of interest. Check out this video, which shows the Skygauge system in action:

Non-Destructive Testing

 

That probe is using ultrasound to carry out Non-Destructive Testing, or NDT. This kind of testing can measure the thickness of metal walls, protective coatings and more. The Skygauge drone comes equipped with an Olympus 38DL Plus gauge, capable of collecting a wide range of data. With swappable tips on the probe, even the integrity of weld joints or corrosion can be assessed.

In the absense of a suitable drone, such tests would normally have to be carried by a person holding this sensor up against a surface. In sectors like oil & gas or shipping, this requires scaffolding and even expensive shutdowns so that a human being can safely carry out these tests.

The Skyguage system offers massive efficiencies, with many inspections carried out in a single day by a two-person crew – and without requiring mechanical shut-downs. It’s the only drone using this design we’ve seen (though companies like Voliro Airborne Robotics are also in the NDT sphere with new styles of drones).

Funny thing is, the Skygauge drone was not initially designed with these applications in mind.

 

Indro Idea Lightbulb

Cart before the horse…

 

We spoke with CEO Nikita Iliushkin about his company, and how it got started back in 2016. Interestingly, co-founder and Chief Design Officer Linar Ismagilov invented the design before figuring out precisely what the final use-case scenario would be. A Mechanical Engineer, Ismagilov simply knew there would be applications for a drone that could come into physical contact with a surface – and Iliushkin (who attended the Schulich School of Business) could also see the potential:

“At the time, we didn’t know exactly what it would be capable of doing, we just thought it was a cool project to work on,” explains Iliushkin.

Next step? The duo succeeded in finding another Founder (a fortuitous match made via AngelList in seven days).

“That’s literally like finding a partner on any dating site and marrying them within a week,” laughs Iliushkin. “It’s like, technically, that’s possible – but the odds are one in a 1,000, one in 10,000.”

Roadblocks

 

Skygauge Robotics was on its way, though it quickly discovered that even startups with a great idea can face challenges when it comes to attracting capital.

“No investors would fund us – so we initially funded the first prototype on our student loans,” continues Iliushkin, who had luckily invested in Bitcoin. He cashed out his stock in late 2017 and put all of it in the company.

With that capital, Skygauge built its first flying model and was able to start testing the capabilities of the product. One thing was immediately clear.

“This design had radically different capabilities that other drones do not,” he says.

 

A solution in search of a problem

 

Its maneuverability and ability to make contact with a surface meant this drone would be a good fit for a variety of aerial tasks, including painting or even power-washing. But as Ismagilov refined the technical elements, Iliushkin focused on exploring business use-cases, looking to find the niche that might best suit this highly unusual design. It was during this phase that he discovered Non-Destructive Testing (NDT) using ultrasonic sensors. They knew they had a fit.

“The same way that doctors use ultrasound to see inside of people, drones can use ultrasound to see inside of metals,” explains Iliushkin. The team quickly realized its drone could be used for this kind of inspection on virtually any metal infrastructure – everything from offshore drilling platforms to ships to petroleum refineries.

“What we found was that drones today can’t do this and apply consistent force to take these readings. So drones have largely not seen adoption in this contact-based work.”

As the company’s website explains:

“Large challenges exist in the NDT industry surrounding worker safety and high-cost inspections. Using a drone would eliminate worker risk, cut downtime, and reduce costs associated with equipment rental. Thus, the Skygauge was conceived. With the help of CTO Maksym Korol, the drone’s engineering was refined and advanced. Together, the three founders assembled a team of highly capable engineers and set out to revolutionize the industrial inspection industry.”

And some of those inspection jobs? Using people, they can cost hundreds of thousands of dollars in scaffolding, shutdown costs and protective gear. Skygauge Robotics could disrupt the old way of doing things.

 

A ringing endorsement

 

The Skyguage Robotics team approached Dave Kroetsch, the former President/CEO/CTO of Aeryon Labs – which designed and manufactured high-performance UAS for military, public safety, and critical infrastructure inspection. Aeryon was purchased by FLIR in 2019 for $200 million, and Kroetsch was looking to share his expertise with other startups.

Though Kroetsch was actively assisting startups in other tech spaces, he wasn’t particularly looking to jump back into the drone world. But once he heard the pitch from Skygauge Robotics in late 2019, he could see the company was definitely onto something.

Instead of just another quadrotor, Vertical Takeoff and Landing craft that had been done 10 ways till Sunday…These guys came with a platform that was different, funded well enough that they could actually execute,” Kroetsch tells us.

He could also see, in this startup, echoes of the early Aeryon days – which resonated with him.

“I continue to tell the stories, regale the new startups about the challenges of making things fly and how much harder it is than things that operate on the ground,” he says. “When your code crashes and the drone crashes, it’s not just like it just sits there and stops working: It falls out of the sky and crashes spectacularly or flies away or something of that nature. So it’s definitely a hard business.”

Kroetsch has expertise not only as an engineer, but also a highly successful entrepreneur. He knew that the current enterprise market for standard quadrotor drones was pretty much saturated – and that significant money would not materialize for simply another variation on a theme.

But the Skygauge team had something new. In fact, so new and innovative that CEO Iliushkin and Chief Design Officer Ismagilov were singled out for recognition on the Forbes 30 under 30 list.  

“What they had was something very innovative. I’d seen the simplicity of a quadrotor design, but also the limitations. And that limitation is being able to do that (contact) work at height,” explains Kroetsch. “For me this is a capability that opens up a whole new swath of opportunity.”

(Here’s Dave, below, in a screengrab from our interview.)

A huge market

 

Skygauge Robotics could see there was a huge potential market. Kroetsch quickly realized this, as well. And when he accompanied the Skygauge Robotics team to a recent conference for the oil & gas sector in Texas, the reaction from the convention floor confirmed it. People came to the booth throughout the show, saying this was precisely the kind of solution needed.

And, says Kroetsch, he’s continuing to learn of more use-cases for the Skygauge product.

“One is doing tank inspection inside of tanker ships,” he says.

“Today they’ll drain the oil out of tank, then actually fill it with water, and put a boat in it and put inspectors on that boat as they take measurements and whatnot from the inside. As you can imagine, this is generating thousands of gallons of contaminated water, at a cost of millions of dollars to deal with this in an environmentally friendly manner. So to be able to go and do some of these applications in some of these environments without the environmental footprint I think is really, really valuable.”

Kroetsch says the documentation and governance he saw when coming on board was also quite “mature” for a young startup, likely owing to CEO Nikita Iliushkin’s business training.

And it’s that business head that has Skygauge Robotics opting not to sell its product the traditional way.

 

Leasing model

 

Skygauge is now taking orders (and deposits) from customers interested in leasing its drones on an annual basis. We’ve seen this model with Percepto, and suspect it will grow in popularity – particularly for highly specialized drones. Under the leasing model, customers will receive upgrades as the technology improves.

Dave Kroetsch believes it’s the best approach for both the company and its customers.

“One of the benefits of a leasing model comes from the continuous improvement and change in technology. It makes sense (to purchase outright) when you’re buying a dump truck; that dump truck is going to operate exactly the way you need it to for the next 15 years, whatever your useable life of the vehicle is. An asset like this is very different. You’re going to want the continuous improvements that are coming.”

 

Coming soon

 

Skygauge Robotics is now on the fourth iteration of its NDT drone and is gearing up production to start shipping to customers, likely in Q1 2022. Kroetsch is not only confident in the capabilities of this product, but believes we’ll see more and more highly specialized drones come to market in future.

“Absolutely,” he says. “Indisputably. What we will see going forward in the (drone) industry at large is specialization of manufacturers and of products tailored to a specific market.” 

Skygauge CEO Iliushkin knows the market is there. He’s done an immense amount of research over the years, learning along the way that most refineries and offshore oil platforms etc. have already adopted the standard quadcopter for visual inspections. But their maintenance crews and engineers, he says, have been clamouring for an NDT solution.

“The drone industry has reached an inflection point for drones for visual inspection. The next leap is going to be in this ultrasonic testing space.”

And Skygauge Robotics? It’s ready for contact.

 

InDro’s view:

 

As a company focused on engineering and R&D, InDro Robotics celebrates innovation. We’re pleased to see the progress Skygauge Robotics has made – and also applaud that this is a Canadian company.

Because we build our own specialized solutions for end-users, we also agree with the assessments from Kroetsch and CEO Iliushkin: The future of drones and robotics will become increasingly specialized, with task-specific products for the markets and clients that require them. (That’s why we’ve developed products like ROLL-E and Commander.)

We wish Skygauge Robotics all the best – and look forward to seeing this unique piece of engineering in action.

When it comes to Last Mile, InDro’s ROLL-E delivers

When it comes to Last Mile, InDro’s ROLL-E delivers

By Scott Simmie, InDro Robotics

 

Picture this: You’re expecting an important delivery at home.

But instead of peeking out the window to spot a cargo truck or van, you’re awaiting a text. One minute before delivery, your phone pings with a notification and a QR code.

You look outside and see it approaching: A small robot. It pulls up directly in front of your steps (possibly even climbs the steps). You head outside and present your QR code to a reader on the robot. Once it has scanned to confirm, the lid protecting the cargo bay unlocks and slides open. You remove your package and go back inside. Before you’ve even closed the door, the robot has already moved on.

The transaction was rapid and contactless. The robot did not emit any CO2.

A decade ago, such a scenario would have sounded a bit like sci-fi. Not anymore. Such deliveries are coming – and not solely for the purpose of convenience.

Some context

 

On any given day, on any given street in North America, a large truck or cargo van is likely to come down the road. Inside? Groceries, clothing, electronics, books and more – on their way to people’s homes and businesses.

Even prescription medications are delivered by many pharmacies – which can be particularly helpful for those who may have mobility issues or lack access to transportation. Deliveries are now so ubiquitous that these vehicles have become part of the urban landscape.

But while deliveries have grown exponentially over the past couple of decades, so too have concerns about the efficiency – or inefficiency – of this approach. And that conversation now focuses on something known as the Last Mile.

That, and the potential for robots to become part of a cleaner and more cost-effective solution.

 

The Last Mile

 

The Last Mile phrase refers to the final, critical but inefficient phase of any delivery: Getting the product down that last path to its ultimate destination. That destination is most often the home of a consumer. But it might be to a client, waiting for just-in-time parts. Ultimately, it could be anything, to anyone, anywhere. And with the global pandemic, demand for delivery of everything from soup to nuts to meals has skyrocketed.

Currently, nearly all these deliveries are carried out by vehicles powered by internal combustion engines. It’s one thing to load up a truck with parcels headed from a warehouse in a suburb to, say, Toronto. That part of the voyage can be fairly efficient, because there’s a large volume of goods all initially headed in the same general direction. But things become far less efficient once that truck starts heading down scores of residential streets. Things slow down, more fuel is burned, and costs add up.

Here’s how Business Insider describes the problem:

“In a product’s journey from warehouse shelf, to the back of a truck, to a customer doorstep, the “last mile” of delivery is the final step of the process — the point at which the package finally arrives at the buyer’s door. In addition to being a key to customer satisfaction, last mile delivery is both the most expensive and time-consuming part of the shipping process…

That “last mile” is more costly than you might realize.

“As a share of the total cost of shipping, last mile delivery costs are substantial — comprising 53% overall. And with the growing ubiquitousness of “free shipping,” customers are less willing to foot a delivery fee, forcing retailers and logistics partners to shoulder the cost. As such, it’s become the first place they’re looking to implement new technologies and drive process improvements.”

 

Delivery by drone

Drone Delivery

The image above is from trials InDro Robotics carried out with London Drugs, Canada Post, and Country Grocer on Salt Spring Island. We demonstrated how delivering medications can save time – and potentially lives – by getting prescriptions quickly to people in remote communities. In some of these deliveries, the consumer would have had to travel by hours and take ferries to pick up medications that were delivered in minutes. In the case of products like an Epipen, or Narcan (used to save lives during opioid overdoses), minutes and even seconds can count.

In fact, InDro was a Canadian leader in delivering COVID-19 tests by drone, allowing health care providers on an island-based First Nations community to remain at their clinic – rather than travelling a full day to deliver and pick up test kits. (You’ll find our story on this here.)

But while drones can receive regulatory permission for these kinds of remote flights, we’re still some ways off from routine aerial deliveries to consumers in urban areas. The world of Advanced Air Mobility is certainly coming (see our deep dive into the topic here), but the regulatory landscape will take time to ensure that crewed and uncrewed aircraft can routinely (and safely) share the same airspace when it comes to cities. 

We’ve all seen the exciting vision of drones flying packages right to your doorstep, but in many cases it’s not the best solution,” explains InDro Robotics CEO Philip Reece.

“Ground robots can bring many of the same solutions with no impact on airspace – and due to their compact size they can utilize existing infrastructure. I’m confident in the future we’ll see drones and ground robots enabling delivery by working in unison, but that will take some time.”

And that brings us to UGVs, or Uncrewed Ground Vehicles. Specifically, an InDro-developed delivery product we call    ROLL-E.

 

ROLL-E delivers

 

ROLL-E has been designed by InDro’s engineering team to be part of the Last Mile solution. And there are very specific reasons why the company has chosen to develop this product.

First of all, UGVs are not subject to the same regulatory framework as aerial vehicles, so UGVs can be deployed in urban centres now. In fact, a company called Tiny Mile is already delivering meals in Toronto with its “Geoffrey” platform – and was just featured in this McLean’s magazine article. Though Geoffrey gets a lot of attention from curious pedestrians, this kind of delivery will become commonplace in the years to come. Plus, as noted earlier, we’re in an era of unprecedented global demand for deliveries – coupled with mounting concern over the environment and greenhouse gas emissions. The time is right for a green and efficient solution.

And that’s where ROLL-E fits in.

Last Mile Delivery Robot

ROLL-E is built on the AgileX Scout 2.0 platform. But that’s only the beginning. While platforms like the rugged and reliable Scout are great, they require software and hardware – and generally a lot of tweaking – to transform them into fully-functioning robots.

We did that by integrating another InDro innovation that we call ROS-IN-A-BOX, or RIAB. You can read all about RIAB here, but the key point is that it’s a hardware/software solution that relieves the end user of the tedious task of integrating the Robot Operating System software, plus any other hardware or sensors (such as cameras), and getting them all to work properly together.

With RIAB built in to ROLL-E, the customer has a solution onboard that will allow them to begin running remote deliveries via cellular connection. They simply drive ROLL-E using a gaming controller while watching its path, in real-time, from a remote location via a browser-based console.

Simple to operate

 

ROLL-E is a snap to operate – whether you’re across town or across the country. (In fact, during one recent internal company demo, an InDro employee who had zero background with ROLL-E operated a mission at our Area X.O location in Ottawa from her home in Vancouver.)

UGVs have lower barriers to entry than UAVs for deliveries,” explains Luke Corbeth, an InDro Account Executive specializing in UAV and UGV solutions with a specific focus on delivery.

“They can be setup and deployed quickly, don’t require certified operators and have notably less regulations – this means deliveries can happen anytime at a moment’s notice.”

And throughout the delivery, the robot operator can see what ROLL-E sees, in real-time. The screengrab below was taken from the console while running a demo at our Area X.O facility in Ottawa.

Last Mile Delivery Robot

With ROLL-E’s ample and insulated storage, its top compartment can be divided in two, allowing (for example) for the shipment of frozen goods on one side of the center divider, with non-refrigerated goods on the other. Or, in cases with larger objects, the divider can be removed entirely. This is InDro’s second-generation ROLL-E.

Delivery Robot

Accessible, but not autonomous

 

As noted, ROLL-E requires a human operator with eyes on the road. And while ROS-in-a-BOX platforms are AI capable, this is not an autonomous vehicle.

“It’s critical that it’s not misconstrued as autonomous in any way,” says Engineering Manager Arron Griffiths. “ROS-in-a-BOX is autonomous capable – it has the capacity to put autonomous software on it. But the real core advantage here is the ability to carry teleoperation over 4G and 5G networks.”

In other words, as long as there’s a cellular network at each end, ROLL-E can be operated remotely from anywhere.

That doesn’t mean, of course, that InDro won’t make a fully autonomous product using a LiDAR sensor, SLAM (Simultaneous Localization And Mapping) and obstacle avoidance down the road. It simply means that for this road,    ROLL-E is ready to go.

And – seriously – you could learn how to operate it in an hour. (It also features wireless charging, so no plugging in or battery removal required.)

 

Delivery Robot

Building simple solutions

 

That concept, of doing the heavy technical lifting so that end-users can deploy a simple and pain-free solution, is at the core of InDro’s R&D philosophy: Build innovative things that work reliably and are easy for the end-user to operate.

“We develop specialized robotic solutions for our customers so they can do what they do best and then simply add our solution on to their existing transportation options,” says Philip Reece.

“InDro looks to make using ground robots easy. Working together we can make the end customer experience easier, more convenient and even fun. Who wouldn’t want their groceries delivered right to their door by a friendly robot?”

Or anything else, for that matter.

 

InDro’s view

 

Robots are already beginning to play a role in the Last Mile solution. This is particularly true in China, where robotic vehicles making deliveries are becoming commonplace in cities like Shenzhen. And they’re already making inroads in North America, with even Amazon running trials.

Like ROLL-E, the Amazon robot has been designed to make Last Mile deliveries more efficient, while using current infrastructure (sidewalks, crosswalks, even paths through parks) without being obtrusive.

Products like ROLL-E will play a significant role in the future both by delivering securely and safely – and helping to ease the burden of that last, critical mile.

If you’re interested in what ROLL-E might do for your company, you can get more information (and possibly even drive it remotely!) by contacting Luke Corbeth here.

InDro Robotics and Area X.O: A perfect match

InDro Robotics and Area X.O: A perfect match

Location, location, location.

The phrase usually applies to real estate investment, but it can also apply to Research and Development. What we mean here is that some locations can be more conducive to R&D work than others. In the case of the InDro Robotics R&D facility located in Ottawa’s technology incubator known as Area X.O – we believe we’ve found the perfect fit.

What is Area X.O?

 

Good question. We’ll let its website provide the answer in this quote:

“Area X.O is the futureplex of innovation and collaboration. Our state-of-the-art facility offers a safe and secure environment to create, test and demonstrate future mobility, autonomy and connected technologies. Any innovation. Any application. Any sector… from transportation and telecom to smart agriculture, defence, aerospace, public safety, and smart cities. Evolving from the Ottawa L5 Connected and Autonomous Vehicle (CAV) Facility, Area X.O is proudly established and led by Invest Ottawa. We passionately pursue our vision: to unleash and realize the potential, power and impact of visionary technologies to improve our world and human lives.”

Given that InDro Robotics specializes in R&D involving drones and Uncrewed Ground Vehicles (UGV) – and in remotely teleoperating both kinds of vehicles – you can see why this is a good fit. We’ve also long had a commitment to positive use-cases, working closely with a number of First Responders across the country and researchers and clients around the world. Area X.O is a perfect place to get this kind of work done. And, as you’ll see in the image below, there’s never a shortage of autonomous vehicles of one kind or another around this place:

Area X.o

A giant laboratory

 

That’s key here. While our office is great (and you’ll see that shortly), it’s the location that counts. Area X.O is a restricted facility covering a huge space: 750 hectares (or about 850 acres), offering a 16-kilometre test track perfect for testing autonomous vehicles and urban mobility. There are even traffic lights for these robots.

When you can open the back door and simply drive your robots outside for testing, that’s a huge advantage. Here’s InDro CEO Philip Reece:

“The access to a site so close to the city, which has cutting-edge connectivity including 5G and microwave communications, test tracks with simulated city infrastructure – not to mention our lab, where we literally roll our latest equipment out of the hangar and launch it into the air or send it off into the smart farm – is perfect for R&D. This allows us to develop and test our leading-edge technology so much faster.”

It’s a point echoed by Arron Griffiths, InDro’s engineering manager.

“AREA X.O is an ideal incubation environment,” he says. “It allows you enough space to both create things in an office and then take them directly outside and test them with zero logistics involved. I’ve worked at business parks and academic facilities, and going from a laboratory to real-world – there’s always a hurdle there, there’s always been a road-blocker. Here, I can take a robot out the backdoor and start testing in seconds. It’s its own little robotic ecosystem a stone’s throw away from the capital, which I’m sure is very intentional.”

 

Ottawa Robotics

More than a test-bed

While the infrastructure is impressive, and testing the latest drone or UGV is literally a short walk away, it takes more than location to build a successful R&D facility. It takes a team. And there’s a striking collection of talent in this growing InDro location, including six engineers, project managers, plus seasoned sales and support professionals. These people collaborate side-by-side. It’s the very definition of synergy.

They didn’t land there by accident. Finding people who were the right fit for an agile workplace was a key consideration in the hiring process.

“We’ve selected people based on culture fit as well as their technical know-how,” explains Griffiths. “We’re guided by the principle of collaboration and coherency in the group. We can’t have stubborn people, we can’t have ‘No’ people, because it really bogs us down in development and collaboration within a team.

“Retention of good talent is ultimately the success of any given company. So I’m trying to build the culture that I want here so that we’re all happy and productive and successful. Because happy people work, and they work their asses off.”

(If you want to see what happy people working look like, check out the photo below. You’ll meet both Luke Corbeth [L] and Anthony Guolla, seen here in the Mobile Command Centre, shortly.)

Mobile Command Center

“We do have an awesome team,” explains Peter King, InDro’s Head of Robotic Solutions. “Company culture is important.”

Peter plays key roles in business development and project management for InDro. In conjunction with Arron, he runs the Ottawa facility – and has an ideal background for the job(s). With an Economics degree, Peter worked for years at drone pioneer Aeryon Labs (now FLIR) as Director of Public Safety. He moved on to work with Uncrewed Ground Vehicles at ClearPath Robotics. Working at InDro has allowed him to maximize on that background.

“It gave me the opportunity to see the complete synergy between drones and ground vehicles,” says Peter. “And InDro became such a great fit because now I can focus on both at the same time.”

As of November of 2021, Peter has been with InDro for one year. Like pretty much everyone at this company, he gets real satisfaction seeing technology developed by the firm.

“We’re a Research & Development organization first; we love to tackle new and existing problems,” he explains. “We also have a solid process to allow clients to jump into the technology without a significant capital expenditure upfront.”

Canada Drones

The R&D mission…

 

That’s one of the key things to know about InDro Robotics: At its core, it’s a Research and Development company. Yes, InDro does offer UAV and UGV services directly to customers, along with high-level training. Yes, the firm has carried out groundbreaking trials such as delivering Automated External Defibrillators or simulated blood products by drone. But there’s a strong emphasis on developing new core technologies either directly for a client, or on identifying ways to do things better. Once those opportunities or technology gaps have been identified, InDro then conceives, develops, tests – and ultimately sells – a solution.

“We may not ever become the company that has the most deployment of robots,” says Peter King, “but we play a big part in expanding the industry as a whole.”

For an example, look no further than InDro’s ROS-IN-A-BOX, a bolt-on system that turns a UGV platform into a fully functioning robot without all the usual hassle. (We won’t get into explaining it here, but do recommend this story.)

 

Canada Robotics

Building from scratch

 

Conceiving a new product or solution is, in some ways, the easy part. It’s one thing to come up with an idea, and quite something else to design, build and test a solution. But this is the kind of challenging work InDro engineers truly love, even though progress is measured in a series of small, incremental steps that ultimately add up to that giant leap.

“Engineers are very goal-oriented,” says Arron Griffiths. “So the micro-achievements keep you going. And actually, the major achievement at the end when we’ve done something – it’s kind of like relief. And that relief then allows us to celebrate.”

We asked Ahmad Tamimi – InDro’s first Area X.O hire – about working as an R&D engineer. Here’s what he said:

“Some of the things we’re building are not just niche – but really new. So we need to build things that have never been made before.”

But how do you get there? How do you go from a concept to a finished product? Very methodically, says Ahmad.

“The first step is to translate the strategic idea. Once you do that, you start decomposing the project – you break down the structures. Let’s say the end goal is XYZ. You take this and translate it into more technical terms. Technical team members will (then) really start to understand the end goal, what’s needed to be build – even the time needed, along with the budget and cost.”

All of those steps are written down in logical order, as kind of a blueprint for proceeding from beginning to end.

(That’s Ahmad, by the way, in the photo below.)

Drone Engineers

Meet the team

 

Though we’ve touched on a few members already, you now have significantly more context around why InDro Robotics has chosen Area X.O, and what the team is up to. So let’s introduce you to everyone who helps make that place hum.

Peter King, Head of Robotic Solutions

You’ll remember Peter – the guy who worked at Aeryon Labs and Clearpath Robotics. He’s passionate about technology, great at doing demos for clients, and firmly believes InDro Robotics is well-poised for the future.

“The industry is finally at the point now where the technology is good enough to start deploying robots in volume, at scale,” he says. “In the past it has struggled with things like low-latency communications, which has been solved with 5G technology. We’ve also seen significant progress in areas like AI and really smart autonomy.”

As the industry moves forward, Peter stresses that robotics can help solve labor issues – not create them.

“We’re not focused on replacing people’s jobs, but we are focused on re-deployment. So getting robots to do the dirty, dangerous, mundane jobs so we can get to where can focus on people doing jobs that are more efficient.”

Peter (along with BC-based CEO Philip Reece), is very much the client-facing side of InDro Robotics. He manages high-level partnerships and also plays a key role in InDro’s strategic growth plan.

Peter King

Peter works closely with another very capable person: Luke Corbeth.

Luke Corbeth, Account Executive

Luke’s university studies were split between finance and digital innovation. That’s a perfect skillset for this job, which involves understanding the needs of business clients – and being up to speed on the pointy edge of technology. (You saw Luke earlier, sitting on the left in that mobile command centre.)

Luke specializes in UAV and UGV solutions that involve infrastructure inspection or delivery.

“At a high level, the R&D team comes up with some sort of product – and often these products are useful across multiple verticals,” he says.

“My role is to identify the most promising verticals and approach them from cradle to implementation. I think we have a unique combination at InDro of technical knowledge, regulatory knowledge and resources. These three things help us stand out, and we can be faster to market with a superior product.”

(If you’re interested in learning more about those products, you can reach Luke here.)

But – and this is the perfect transition to the introduction of our Ottawa engineering staff – it’s the engineers who create those products.

“The heart of InDro Robotics is the engineers. Their goal is to make robots as accessible as possible, and they do it with cutting-edge technology.”

Canada Drones

Arron Griffiths, Engineering Manager

From building robots for nuclear facility inspections in the UK through to bipedal robots, Arron has a wealth of experience designing, building and testing devices meant to solve problems. He also happens to be very good with people – a skill so important to InDro in our highly collaborative Area X.O facility. He quietly mentors younger engineers, encouraging them to pursue innovations they’re passionate about.

And he absolutely thrives in the agile environment.

“I’ve worked at universities and nuclear power stations,” he says. “They all talk the talk and want things to be real-world ready. But they never give you enough space to enable that – you always need a meeting to talk about it, to pack up, to leave. All of that is gone here (at Area X.O). You make your changes to the product quickly and then send it back out.”

Ahmad Tamimi – R&D Engineer

Ahmad was the first engineer at InDro’s Area X.O location, which meant he had the first choice of desks. It also meant, for part of the pandemic, he was the only person in the building.

Robotics Engineer
Area x.o

 

Because he was InDro’s first person on-site, Ahmad also developed a great relationship with the Area X.O managers.

Lately, he’s been kept busy with multiple projects, including working with telecom carrier Ericsson to enable ultra low-latency drone operations using the 5G network. He’s worked on ROS-IN-A-BOX, and – like Griffiths – mentors the “very talented” younger engineers who have recently come on staff.

“It’s so they don’t have to start from zero,” he explains.

Ahmad also has a background in cybersecurity and sees interesting times ahead:

“The gap between the digital and physical worlds is narrowing,” he says. “Drones are just one aspect of a growing Internet of Things universe. So I see real risks in this area – plus tremendous opportunities.”

Austin Greisman – Robotics Engineer

Prior to joining InDro, Austin worked at Ericsson – the cellular provider that is always up to interesting things in its own Skunk Works-type lab. While there, he built an LTE-enabled drone.

If you’re in the industry, you’ll be aware that drones capable of operating over cellular networks can be operated remotely – providing there’s a cellular network at both ends and you have the required regulatory permissions. It’s an area the firm has been innovating in for several years now, so Austin was already coming from a place that would be a good fit. What we didn’t know when he was hired, was how incredibly eloquent he could be when describing his passion for technology. Just have a listen to why he’s enjoyed being involved with the ROS-IN-A-BOX project:

“I like it because I love robots. It’s the beautiful harmony between hardware and software.

“It’s the beginning parts of a system that can be truly useful for a customer, where they can plop it onto a system and make it a robot that’s smart.”

Austin also believes the world is on the cusp of exponential growth of the adoption of robotics. He believes companies like InDro, by making robots more accessible to non-technical users, will play a significant role.

“It’s limited right now by barrier to entry. So by moving that barrier, I think there will be a massive explosion (of adoption),” he says.

Robotics Engineer

Ella Hayashi – Junior Engineer (Software)

As a student, Ella used to occasionally offer her expertise at an Ericsson project known as “The Garage.” Basically, the ‘garage’ was a spot within Ericsson where the company offered funding to internal startups. Ella got involved.

It was while helping out in The Garage that she became really interested in the Robot Operating System software, known as ROS (and half the equation in our ROS-IN-A-BOX).

With a BSc in Computer Science, Ella is working more on the software side of things. She started in October of 2021 and already is currently working on product documentation so that clients can fully understand and exploit InDro products. She’s also involved with preparing internal tutorials on Gazebo – powerful simulation software for robot building and testing – and the Robot Operating System (ROS) software.

I like that my work allows me to learn the really cool and interesting stuff, but also my work helps other people learn as well, so it’s a great position to be in!” she says.

Ella adds one more thing:

“I love working here.”

Robotics Engineer

Kaiwen Xu – Systems Engineer

InDro’s most recent Area X.O hire (and there have been many this year), is Kaiwen Xu. He comes to us after a six-year stint with MicroPilot, a leading manufacturer of autopilot systems – both hardware and software. Kaiwen was involved with programming control systems for all configurations of UAVs, including standard multi-rotor designs, fixed-wing aircraft, fixed-wing VTOLs and even helicopter-style drones.

Already, Kaiwen has seen the tremendous advantages offered by the Area X.O location.

It’s the perfect place for drone and ground vehicle development and testing,” he says.

“Most drone companies I’ve dealt with previously had to drive a long way outside the city to do a flight test. Here at Area X.O, you can take off anytime you want, and you don’t have to worry about forgetting a battery or screwdriver.” (Anyone who’s worked at a drone startup will know exactly what Kaiwen is talking about!)

Like others here, he’s fascinated by the daily intersection between hardware and software.

Robotics is a fun industry. You write some code and flash it to the circuit board – and the robot will work as you asked it to do.”

Yes, he says, sometimes there are bugs – which can lead to frustrating hunts through endless lines of code to identify and mitigate the issue. But when that process ends with success (as it inevitably does), Kaiwen says there’s a real feeling of satisfaction.

Canada Robotics

Anthony Guolla – R&D Sales/Engineer

Anthony is a rare breed: He’s both an engineer and a person on the sales side of things. We’ve saved Anthony for last because his position is both unique – and also reflects the importance InDro places on understanding its clients.

“While Luke is more focused on robots doing things, my sales side would be to deal with people building robots, rather than buying what those robots can do.”

Cool. And because he’s an engineer, he can hop in when the rest of the engineering team needs a hand. Plus, he can speak with other engineers from the client side on the same level.

“There’s a certain engineering framework or methodology, so I can tap into how they’re thinking about their product and get a sense of what they’re looking for and what they want.”

 

Robotics Engineers

Of course, part of his job is to help potential clients understand the capabilities of the AgileX UGVs – InDro’s platform of choice for ground robotics.

“They’re very powerful, great pieces of hardware,” he says. “It’s exciting to work with them. I try, as much as possible, to get clients to do a hands-on demo. Once they have their hands on the joystick, they love it.”

Speaking of that, Anthony here echoes Ella.

“I love my job. My job’s great.”

And, as engineering lead Arron Griffiths observed earlier: Happy people work hard.

And these people do. Every single one of them.