Aerometrix methane detection operation poised for new growth

Aerometrix methane detection operation poised for new growth

By Scott Simmie

 

This job, on occasion, stinks.

But it’s all in a day’s work for Aerometrix, Canada’s only company specialising in methane detection using drones. It’s not the methane itself that smells – it’s actually an odourless gas – but it’s the locations where methane can be emitted.

Imagine flying a massive landfill on a hot day in California. Further imagine that, in order to keep the dust down, the landfill operators have recently sprayed the location with leachate – the slimy runoff juice created by the landfill itself. It’s very biologically active, and it smells really bad.

“It’s horrendous – horrible,” chuckles Eric Saczuk, who often carries out the complex flights.

“It just ends up just suffusing through you and anything that you’re wearing. It even seems like it goes into your skin.”

Thankfully, not all missions are like that. But all of them do achieve results.

And now, for multiple reasons, Aerometrix is poised to be taking on many more of them – branching out into detection at oil and gas refineries.

Below: Flight Operations Lead Eric Saczuk prepares for an Aerometrix flight

 

Eric Saczuk Aerometrix

WHY METHANE DETECTION?

 

When it comes to climate change, methane is an invisible threat. Though we often hear about CO2 emissions, methane is a serious problem when it comes to greenhouse gases.

“Methane has more than 80 times the warming power of carbon dioxide over the first 20 years after it reaches the atmosphere,” states the Environmental Defense Fund.

“Even though CO2 has a longer-lasting effect, methane sets the pace for warming in the near term.”

So there’s increasing urgency to detect and mitigate methane emissions. At landfills, for example, once the emission points are detected, the gas can be trapped – and even used to generate electricity.

“The main emphasis recently has been on landfills, both in Canada and the US,” explains Aerometrix Co-Founder Philip Reece. “We flew 16 missions over the last 12 months.”

And these missions aren’t simply popping a drone up for a brief flight. Nor are they automated. Every Aerometrix flight has to be carried out manually.

“Over large sites like the Vancouver landfill, that took us three days of flying, six hours a day,” says Saczuk. “We fly these missions at five metres above the ground – and there’s lots of things that can get in the way at that level.”

Aerometrix flights deploy either the DJI M300 or M350 drone. But the secret sauce is not so much the drone as the sensors. (And it’s most certainly not the leachate.)

 

SENSORS

 

Aerometrix deploys two different sensors to detect methane. One of them is called an Open Path Laser Spectrometer (OPLS), developed by NASA for use on the Mars Rover. It was designed to detect trace gases. In the case of methane detection, the laser is tuned to a specific frequency that is absorbed when it encounters that particular gas. The greater the absorption, the higher the methane concentration.

The sensor requires “clean air” for accurate readings – meaning there can’t be any prop wash or turbulence caused by the drone itself. Aerometrix engineers built a brace that holds the sensor well forward of the drone for this purpose. Having that sensor and rod, of course, upsets the balance of the drone. In fact, Saczuk estimates the weight of the rod and sensor at roughly 800 grams, perched about 1.5 metres forward of the drone.

And while the flight controller is capable of compensating for that, Saczuk always performs a calibration once the drone is in the air.

“We take off to maybe three or four meters above the ground. Once the drone is airborne, we go into the controller and initiate the calibration. So the drone calculates its revised centre of gravity and knows what its steady state is. The two front propellers then spin a little bit faster to keep the nose from dipping.”

Flying manually, Saczuk uses Tripod Mode to limit the drone’s speed. The most accurate readings occur when flying at about five metres per second.

On an ideal flight day, there would be a steady wind at around eight metres per second. If the breeze is coming from the east and blowing over the landfill, this provides a couple of advantages. First of all, by positioning operations at the eastern end you can avoid most of the smell. But the real reason is because the drone will begin its flight in clean air not contaminated by methane. That will enable the methane, once detected, to really contrast with the surrounding environment.

“What we don’t like is no wind, because then the methane just goes up vertically and it’s variable – it just gets pushed around by a little vortices here and there,” says Saczuk.

The drone will make multiple passes (in this example, north and south) over the site. When the laser hits methane, some of those rays will be absorbed and some reflected, depending on the concentration. Flying multiple paths allows enough data to be gathered to create a visualization of methane in a vertical plane.

We’ll do this on the upwind and downwind side of the site as well as a full perimeter to understand where the main emissions source likely are,” he adds. 

“We shouldn’t be seeing much methane on that eastern side, assuming the wind is coming from the east. And then as we fly the western edge, that would capture all of the methane that’s being pushed by the wind and that would be the downwind curtain.”

While Saczuk is piloting, there’s a second controller that displays the data. A Raspberry Pi onboard the drone takes the data from the sensor and merges it with the flight data from the aircraft. So Saczuk can see the invisible gas while piloting.

The goal is obtain a really good cross-section, as illustrated below. Feel free to try your hand at the equation.

Flux Curtain

SENSOR TWO

 

The second sensor deployed is called a Laser Falcon. The sensor, mounting hardware and accessories will set you back close to $60k CDN. It is mounted directly on the drone and faces downward.

In this case, the laser is factory tuned for methane detection – it is the only gas the Laser Falcon can detect.

“It’s an active sensor that will detect the amount of absorption that’s happening. The scattering of the laser in the air tells the sensor how much methane there is not at a point – but through a column of air.”

In both cases, the data is crunched to make the invisible visible. The result is called a “flux curtain” or “flux plane” – with differing colours representing different concentrations of methane, measured in parts per million. In the graphic below, the greatest concentrations are seen in the middle of the image, just below the centre.

Methane Detection

POISED FOR GROWTH

 

In December the Honourable Steven Guilbeault, Minister of Environment and Climate Change, announced draft methane regulations. These regulations aim to reduce methane emissions by 75 per cent by the year 2030, when compared with emission from 2012. The focus is on the oil and gas industry.

“Oil and gas facilities are the largest industrial emitters of methane in Canada—they release about half of total methane emissions,” reads the draft.

“These releases occur during normal operation of equipment and from leaks. To comply with Canada’s existing methane Regulations, industries had to adopt practices to monitor for leaks and ensure that repairs happen to reduce the amount of gas intentionally vented into the air.

“Under the draft methane amendments, the Government of Canada is enhancing the emissions-monitoring requirements through a risk-based approach to structure inspections for fugitive emissions—facilities with equipment that has greater potential for emissions must undertake more frequent inspections. All inspections must be conducted using instruments with a standard minimum detection limit, and repair timelines will depend on emissions rates. Further, the draft regulations introduce an audit system, requiring one annual third-party inspection to validate company program results.”

In other words, it won’t be long before oil and gas facilities will need to bring experts like Aerometrix onboard to verify that the reported data is accurate.

“Lowering methane emissions from our oil and gas sector is one of the fastest and most cost-effective ways we can cut the pollution that is fueling climate change,” said Minister Guilbeault in this news release.

“As the world’s fourth largest oil and gas producer, we have both the responsibility and the know-how to do everything we can. At this time of robust profit margins and high energy prices, there has never been a better time for the oil and gas sector to invest in slashing methane emissions.”

 

NEW INVESTMENT

 

In creating Aerometrix, co-Founders Philip Reece and Michael Whiticar developed a solution to a significant and largely invisible problem. Now, with even greater emphasis on reducing methane emissions, Aerometrix has attracted a major new investor.

That investor is Omar Asad, the company’s new Director. He sees great potential ahead.

“The cutting-edge technology utilised by Aerometrix is unmatched and has already translated into significant savings for clients,” says Asad. “What’s more, we offer both a much-needed and innovative solution – while helping to reduce methane emissions at a critical time.”

Asad’s investment, in conjunction with Canada’s impending methane legislation, paves the way for accelerated growth.

Below: Eric Saczuk points to the second controller, highlighting real-time methane detection

 

Aerometrix Flux Curtain

INDRO’S TAKE

 

Philip Reece, of course, is also the Founder and CEO of InDro Robotics. And he’s clearly pleased with both the investment – and the growth trajectory.

“Landfill detection alone has kept Aerometrix busy and profitable,” says Reece. “With the pending legislation we are poised for significant growth in the oil and gas sector.

“Not only is using these sensors with drones more accurate than traditional hand-held walk-arounds, but Aerometrix has racked up years of experience in turning our findings into clear and actionable data. This company, particularly with Omar onboard, is ready for the next phase of growth.”

Interested in learning more about methane detection by Aerometrix? Contact them here.

Canadian Startup KiDrone has big plans – and technology – for reforestation

Canadian Startup KiDrone has big plans – and technology – for reforestation

By Scott Simmie

 

A Canadian startup has ambitious plans to deploy long-range, high-payload drones for reforestation at scale.

Using an extended-range, heavy-lift drone and patent-pending Machine Learning, the company calculates it could drop one million seeds in a single mission. Not only that, but it could plant seeds for different species in the most appropriate locations.

“We are a reforestation technology company,” explains CEO and Founder Trevor Grant. “We are going to be deploying heavy-lift unmanned helicopters coupled with AI machine learning to scale reforestation to industrial levels.”

That’s an impressive goal. Let’s look at how KiDrone plans to achieve it.

 

GENESIS

 

Many of the startups we’ve met over the years were founded by engineers. But CEO/Founder Trevor Grant is a lawyer by trade. So how did he wind up starting a venture involving drones and reforestation? Well, a couple of things happened.

First, he happened to watch a documentary on Netflix called Breaking Boundaries: The Science of Our Planet. It was about climate change, and the need to take urgent action on a global level. The following day, he happened to be reading an article about Beyond Visual Line of Sight flights. And then he started thinking.

“It tweaked in my head, perhaps the largest impediment to this (reforestation) is labour supply. And fleets of autonomous drones might be able to tackle such a problem at scale,” says Grant. Plus, he was also thinking about his children, living during an unprecedented era for planet earth.

“There was a genuine desire to leave the world to my kids better off than it was left to me,” he said during an interview at Toronto’s Collision conference.

And so KiDrone was soon born, with a mission to drop enough seeds to truly make a difference. But not just haphazardly. To ensure the best results, seeding would need to be targeted – with the correct species dropped in locations best suited to their survival and the broader ecosystem. Plus, the seeds would need to be coated.

“Seed encapsulation technology has been around for a very long time, but mainly in the agricultural sphere, not much for the reforestation or restorations sphere,” explains Fatima Mahmud, KiDrone’s Chief Scientific Officer. Mahmud is an environmental scientist born in the Middle East and who studied at the University of California, Berkeley, before obtaining her Masters degree in Toronto.

“Some of the reasons for encapsulating a seed, for aerial seeding specifically, is number one: It increases the flowability of the seed through the (dispersal) mechanism. Number two: It adds weight to the seed so the seed drops to the site. You can also add materials or compounds to the encapsulation that can deter pests and predators. And making the seed uniform allows it to find a suitable microsite in the soil once it’s dispursed.”

Below: Encapsulated seeds at KiDrone’s Collision display

 

 

 

KiDrone seeds

GETTING STARTED

 

Going from an idea to a viable product or service is a voyage – just ask any Startup. And the first part of KiDrone’s path has been to demonstrate that this is a viable, doable solution.

“It’s been a two-year journey to validate our hypothesis and validate where direct seedings works and where it doesn’t work,” explains CEO Grant. “Because direct seeding isn’t a cure-all for all reforestation needs. It’s highly effective in many situations – but not all.”

Post-wildfires (and Canada has had many this year), is a very promising use-case. Grant says high-intensity fires can consume the natural seed inventory that might be on the forest floor.

“So there’s a need for direct seeding at that point. Where direct seeding struggles is in drought-prone conditions,” he says.

 

TARGETED SEEDING USING AI

 

It’s not that difficult to deliver seeds via a drone. In fact, some companies have been dropping seeds and seed pods successfully. What differentiates KiDrone is its planned use of AI – and a proprietary seed dispenser capable of holding the seeds of 12 different species and disbursing them selectively. By examining multiple data points during flight, the drone will autonomously dispense the seeds best suited to particular locations based on the mission profile.

“There’s thousands of data points for any given site – climactic, GIS, various forms of imagery or LiDAR, soil lab results – an endless amount of data you can get to classify or gain conditions on a site,” explains Grant.

“And that will all lead to whether certain species may or may not be optimal (for a specific location), and what other species might be supportive. Our AI will be able to determine which trees are more likely to succeed in which areas. Because we’re not interested in monoculture or pine nurseries. We’re very interested in a more holistic reforestation approach that includes many different species, supported species, and Indigenous species of medicinal worth and spiritual worth.”

That last part is very important to KiDrone.

“Our biggest commitment is to work alongside the Indigenous communities where we operate. It’s their land and it’s their traditional territory. They should be the ones directing how reforestation happens. We simply view our roles as facilitating the reforestation goals that they have.”

Below: Founder/CEO Trevor Grant at the Collision conference.

 

KiDrone

THE NUTS AND BOLTS

 

It’s clear, speaking with CEO Grant, the company is working toward its goal via a methodical, evidence-driven trajectory. There’s been a lot of work on seed encapsulation so far though a partnership with the Northern Alberta Institute of Technology (NAIT), as well as a flight using a crewed helicopter for dropping encapsulated seeds. It successfully seeded 40 hectares.

“Our largest concern is validating where the seeds will grow, not where the drone will fly,” he says. “We’re concerned about the science behind encapsulation and determining where it’s effective to seed and where it’s not. We’re putting the science first, because we’re looking to do this for the next 20 years and not simply flip a carbon offset project.”

Existing startups doing seeding tend to use multi-rotor designs, which limits the distance they can cover per mission. Here, KiDrone differentiates itself by planning to use a much longer-range drone. The company has established a relationship with Scheibel, a manufacturer of UAVs (and landmine detectors). The company has a long-range uncrewed helicopter called the S-100. It can carry 50 kilograms of payload (seeds plus dispersal mechanism), and has an incredible range – up to 1000 kilometres, says Grant.

“The great thing about having such a large airframe that we’re looking to deploy – we’re able to carry 12 different species in one flight,” he says.

“So mid-flight, while travelling at 100 kilometres an hour, the system will be able to disperse an entirely different species, change the ratio of species being disbursed, add different nitrogen fixers or supportive species, all autonomously, based on AI and a seed-planting pattern that is pre-loaded to the mission.”

 

Below: A seedling that germinated from one of KiDrone’s encapsulated seeds. Image courtesy of KiDrone

KiDrone

THE BUSINESS CASE

 

There can be no question there’s an environmental demand for reforestation at scale. KiDrone’s pitch deck states “Reforestation in Canada is broken.

“Since 2010, Canadians have lost more than 44 million hectares of tree cover due to timber harvesting, wildfires, and commercial development. This represents an urgent, unmet need and opportunity to radically transform how industry & government deliver and scale reforestation in Canada.”

And with the devastating and deadly wildfires of 2023, the country has lost even more of that tree cover. The current system, of using human beings to plant seedlings, simply cannot keep up with the demand. It’s also inefficient – and there are vast tracts of forest in Canada that are simply inaccessible.

The big forestry companies also tend to have reforestation deficits, where they simply have not been able to reforest at a rate equal to the harvesting of timber. Plus, the KiDrone deck points out, “Corporate Canada’s demand for carbon offset opportunities vastly outweigh the current supply.”

So there’s not only an environmental imperative, but there’s also a strong business case. The company has been targeting three different sectors:

  • Top 12 Canadian forestry companies, each with reforestation requirements > 25k hectares
  • Federal & provincial forestry departments “focused on post-wildfire timber supply mitigation”
  • Carbon credit offset buyers and sellers

It all equals huge demand for a service like this, says Grant.

“Endless,” he says. “I think the wildfires we’ve had to date are a good example of of how large the reforestation required is in Canada alone – let alone globally.”

The company’s business model projects dropping 10k seeds per hectare in the future, with a 20 per cent viability rate. That comes out to 2,000 trees per hectare, at $.50 per tree. That’s $1,000 per hectare. Based on operating one drone and starting operations in 2024, its revenue projections climb to more than $1.2M by 2026 – and that’s with a single drone deployed. And because costs are low when compared with traditional tree seeding/planting methods, nearly all of that revenue would be profit.

The company is currently in a seed round (and we’re talking capital here, not trees), which its hoping to close late this summer or early fall. Once complete, there will be some additional immediate hires and KiDrone will be in “an early operational state.”

Grant is aware that BVLOS permission won’t be automatic, so he anticipates some of the early deployments will be VLOS, or operating with specific SFOCs.

INDRO’S TAKE

 

We’ve been through the Startup path, and know of the many challenges that come with the territory. But we also know a good idea when we see it. KiDrone has clearly identified its market and has laid out a solid path to commercialisation. It’s also a perfect application of autonomous technology for the Three Ds – taking on jobs that are dirty, dull and dangerous.

“In an era of climate change and with record-setting temperatures, getting more trees on the planet at scale helps all of us. I see this as definitely a Drones For Good application,” says Indro Robotics CEO Philip Reece. “I also really like seeing that KiDrone is taking it slow with an evidence-based approach – and a solid business plan. I look forward to hearing about their first deployment.”

You can learn more about KiDrone here.

Methane detection via drone with Aerometrix

Methane detection via drone with Aerometrix

By Scott Simmie

 

There’s no denying climate change. Whether it’s the recent and devastating floods in Pakistan, fires in Portugal – or the multiple rivers globally that have dropped to historically low levels – the planet’s equilibrium has been changing.

While carbon dioxide emissions get much of the press, methane is one of the most potent contributors to the problem of greenhouse gases.

“Methane has more than 80 times the warming power of carbon dioxide over the first 20 years after it reaches the atmosphere,” states the Environmental Defense Fund.

“Even though CO2 has a longer-lasting effect, methane sets the pace for warming in the near term.”

That’s a key reason why the detection of methane emissions has become a priority. It’s also a large part of why Aerometrix – a company specialising in methane detection using drones – was formed.

Below: One of the early Aerometrix rigs for methane detection. The sensor is at the forward end of the counter-weighted rod to keep it clear of prop wash.

Aerometrix

Aerometrix

 

Before we get more into what Aerometrix does (and how it does it), we should point out there’s an InDro Robotics connection here. InDro CEO Philip Reece, along with Michael Whiticar, founded the company. Aerial operations for Aerometrix are carried out by InDro Robotics.

“We felt there was a void in the marketplace for the detection of methane and other gases,” explains Reece. “We also wanted to approach this from an engineering-first perspective, ensuring that we were using, and even developing, the best available sensors and workflow.”

Aerometrix uses two different types of sensors for methane detection. The first is the proprietary GasMap sensor, which is capable of detecting methane in parts per billion (ppb). This laser-based sensor had its origins at NASA’s Jet Propulsion Laboratory, where it was developed for Mars missions. Aerometrix has further refined that sensor and has used it to accurately map methane emissions at petrochemical plants, gas wells, landfills – and even on agricultural sites. (Animals, particularly cows, are a significant methane source.)

“GasMap uses laser spectroscopy,” explains Peter Sherk, an electronics engineer with Aerometrix. “It uses the absorption of lasers by methane to detect concentration. And it’s very precise – detecting not only its presence, but how much there is at a given point in time and space right down to parts per billion.”

The sensor maps methane (and other gases) by flying horizontally through the plume. When multiple passes at different altitudes have been completed, a “curtain” is obtained. (Don’t worry, we won’t ask you to carry out the calculation – besides, our FluxCurtain software does that.)

Flux Curtain

Zig-zag

 

As mentioned, the drone flies horizontally through the plume – with each parallel flight at a slightly higher altitude. The sensor is constantly capturing georeferenced data which Aerometrix then runs through software.

In the images below, you’ll see that zig-zag flight pattern. The blue lines at the bottom indicate methane concentrations. Not surprisingly, those concentrations begin to dissipate at higher altitudes as the methane plume mixes with the surrounding air.

The second image is what’s referred to as the actual “Flux Plane” – where the methane concentrations are represented visually by colour.

Methane Detection
Methane Detection

Efficiency

 

Though pipelines and facilities that handle methane are obvious places where detection is required, local city dumps are also interested in detecting – and even capturing – methane produced by buried garbage. But many are unaware of the efficiency and accuracy of using sensors like the GasMap mounted on a drone.

“A lot of landfills are doing methane detection already,” says Sherk, “but they’re using far less convenient methods. A lot of the time there’s someone walking back and forth with handheld sensors. With larger landfills any sort of grid pattern will take days and days – and walking over an old landfill can’t be a really healthy operation.Operating a drone is vastly more efficient. And the GasMap sensor is capable of detecting not only the presence of methane, but its concentration at various altitudes as the gas forms a plume and mixes with surrounding air.

Some landfills have been able to not only capture but exploit methane that was previously escaping. The Capital Regional District on southern Vancouver Island has been running a power generating plant on-site at the Hartland Landfill, fuelled solely by captured methane produced by decomposing garbage. It’s been doing so since 2004, creating enough energy to power 1,600 homes.

Recently, the volume of methane produced by the landfill has increased, and the power plant is nearing the end of its operational life. In 2023, the landfill will switch gears and process the biogas into natural gas – selling the product to FORTIS BC.

Kudos to the Capital Region District for having such foresight; the example also highlights how captured methane can be put to positive use.

Aerometrix has carried out surveys now at numerous landfills hoping to capture or otherwise mitigate methane emissions. Using FluxCurtain software, its reports turn what was previously an invisible problem into clear, actionable data that provide a clear picture of emissions and concentrations.

Methane Detection

Another sensor

 

We mentioned a second sensor also being used by Aerometrix. It’s called the LaserScan, and it’s a very lightweight sensor that also uses laser spectroscopy to detect the presence of methane.

Unlike the GasMap, the newer sensor is able to measure vertically. In other words, the drone can be flying directly above a plume and take a measurement straight down to the ground. While it’s not quite as precise as the GasMap sensor (parts per million, rather than parts per billion), the LaserScan does have an advantage when it comes to speed.

Because it does not rely on flying through the plume, the LaserScan is ideal for detecting emissions over large areas. By simply flying a grid pattern at a single altitude, it can rapidly identify emissions. At an altitude of 98.4′, it’s capable of detecting 500 ppm of methane with a plume diameter of one meter.

“While the Falcon is less precise than the GasMap sensor, it has a definite advantage when it comes to speed,” explains Keegan Richter, a mechanical engineer with Aerometrix.

In cases where greater precision is required, Aerometrix can fly two missions: The first with the LaserScan to rapidly detect the location of emissions – particularly over large landfills – followed by GasMap for parts-per-billion accuracy.

Methane Detection

InDro’s Take

 

We obviously have a special interest in Aerometrix, since InDro’s pilots and drones carry out its aerial missions.

Not surprisingly, since CEO Philip Reece is a co-founder, the mission of Aerometrix closely aligns with InDro’s guiding philosophy: Developing and utilising technology to increase efficiency and – whenever possible – contribute to positive change.

Arguably, the dramatic and apparently escalating shifts we’ve seen to global climate patterns are one of the most pressing problems on the planet. Methane is a key contributor to those changes.

The ability of Aerometrix to accurately detect methane emissions has already helped clients cap leaks and examine other methods for capturing this gas before it hits the atmosphere. Its missions have also meant that human beings are no longer exposed to hazardous environments while capturing data using handheld devices.

In our mind, those are both positive outcomes.

Interested in more information? You can contact Aerometrix directly here.