Taking flight: Onboard a BETA Technologies electric-powered aircraft

Taking flight: Onboard a BETA Technologies electric-powered aircraft

By Scott Simmie

 

It’s one thing to hear about new and transformational aircraft that will blaze the path toward an Advanced Air Mobility future. It’s quite something else to see them up close – and even get the chance to fly in one.

But that’s precisely what happened during a recent trade mission organised by Canadian Advanced Air Mobility (CAAM), which included visits to Unither Bioélectronique in Bromont, Quebec – and BETA Technologies in Burlington, Vermont.

Both companies are pushing the envelope in this sector. Unither is working on a hydrogen-powered helicopter for sustainably and rapidly moving organs for transplant. And BETA Technologies is already manufacturing (and taking orders for) fully functioning electric aircraft that are in the process of FAA certification.

“BETA is building an aerospace company to make aviation more sustainable,” Chief Information Officer Blaine Newton told the CAAM delegation. And it’s not just the aircraft (BETA has both an eCTOL – an electric Conventional Take Off and Landing fixed-wind aircraft – and an eVTOL that takes off and lands vertically but transitions into forward, efficient, fixed-wing flight).

“We’re here to change the future of aviation,” he said. And after seeing BETA’s factory (including its incredible battery technology and charging system) – and experiencing a flight in its ALIA CX300 eCTOL – that doesn’t feel like hyperbole.

Below: The CX300 CTOL in flight, followed by the factory floor at BETA Technologies in Burlington, Vermont

THE AIRCRAFT

 

What would become BETA Technologies was, literally, the brainchild of its Founder and CEO, Kyle Clark. An engineer and Harvard grad, he wrote his graduate thesis on a high-wing pusher aircraft, and even built a flying scale model. Then the real work began.

“I pitched it to everyone who would listen from 2004 to 2017. I pitched it for 13 years.”

But then United Therapeutics Founder and CEO Martine Rothblatt got onboard. She has an interest in efficient and sustainable aircraft for transporting human transplant organs. The company gave BETA Technologies a $48 million US contract.

That was just the beginning. Now, with multiple eCTOL aircraft manufactured and its first production eVTOL just coming off the line (a full-scale prototype had already been built and flown), the company has an impressive trajectory and no shortage of capital.

“With an established customer base for both eCTOL and eVTOL aircraft, and more than 600 aircraft in the backlog, BETA is funded by military contracts, firm deposits, charging sales, federal financing from the Export-Import Bank of the United States (EXIM) and equity investment,” states its website. Those partners include GE Aerospace, which is investing $300 million to co-develop a hybrid-electric turbogenerator to extend range for broader use-cases.

Incorporated in 2017, BETA Technologies now has some 850 employees and is growing rapidly. With an impressive manufacturing facility, much of the aircraft is vertically integrated. It designed and builds its own motor. The company holds 440+ patents and has more than 50 charging sites in the US (including one in Canada). The CX300 eCTOL can be charged in less than an hour and has shown a maximum demonstrated range of 336 nautical miles.

“We have built and are flying five aircraft, joining the family of our existing fleet of three prototype aircraft,” says BETA’s Kristen Blodgett. These include four CX300 eCTOLs and an A250 eVTOL – with the assembly of several others underway.

And the cost of these sustainable flights? BETA says the eCTOL version is 67 per cent less expensive to operate per hour than a comparable conventional aircraft. What’s more, that aircraft has an incredible glide ratio of 17:1. And with its electric engine, it’s quiet.

“It’s about the same noise as going down the highway,” said Clark.

 

THE EXPERIENCE

 

During the tour, BETA Technologies offered three seats for a spin in its ALIA eCTOL CX300, which comes in both a five-passenger version (pilot and passenger in cockpit, four in the rear) and a cargo version. Other than the removal of four seats in the rear for cargo, the two aircraft are technically identical.

The lucky passengers were Red Deer Regional Airport CEO Nancy Paish, Langley Regional Airport Manager Patrick Sihota, and InDro’s Scott Simmie. We eagerly signed waivers we didn’t take the time to read – knowing an ALIA CX300 eCTOL had already flown across the US on a cross-country tour – then buckled up. The seats were comfortable and there was plenty of legroom. Large windows on each side of the passenger section offered an incredible view.

We taxied toward the runway with minimal noise. Unlike a combustion engine, the electric power plant noise was barely perceptible. With BETA pilot Christopher Caputo at the controls and Paish riding shotgun, Caputo let the electrons loose (394 kW on takeoff). Acceleration was immediate and smooth; the FAA-Certified five-blade propeller (built specifically for electric aircraft) is fixed pitch, so there wasn’t that additional burst of noise as pitch position changed. Small vents were open in the cockpit and rear windows. The only sound was that propellor slicing the air, the increasing air flowing through the vents, and a slight runway rumble.

Soon we were wheels-up, with Caputo controlling the aircraft through a fly-by-wire system (which could, in future, be used for autonomous flights). We flew between 4,000 and 7,000′ AGL. Caputo told us over the headphones he’d give us a demonstration of its aerodynamics. He pulled a 70° bank in one direction, then the other. The response was instantaneous and incredibly smooth. It was, in a word, precise.

“Flying in the BETA eCTOL was an incredible experience – the rush of speed, the simplicity of the aircraft, and the quietness of the cockpit where all you hear is the wind,” says Nancy Paish. “I was struck by how responsive the aircraft was and how steadily it held its position, so different from conventional flying. Experiencing this technology first-hand truly inspired me.”

After quick spin over a bit of Burlington and Lake Vermont, it was back for a smooth landing and taxi. When it was all over, Caputo simply hit a couple of switches and everything was shut down and the CX300 was ready for charging. It felt, for all passengers aboard, as if we had just been given a glimpse of the future.

“Advanced Air Mobility is not a distant concept – it is real, and it has the potential to make a meaningful difference in the aviation industry,” added Paish, who is in the midst of an ambitious expansion at the Red Deer Regional Airport with sustainable, regional aviation clearly on her radar.

“My key takeaway from this trip is clear: the future of aviation is changing, and Red Deer Regional Airport is ready to play an important role in that journey.”

Langley Airport Manager Patrick Sihota was similarly impressed.

“Witnessing BETA’s technology firsthand isn’t just inspiring; it proves the future of sustainable aviation is within reach. For Langley Regional Airport (YNJ), this is a game-changer. Aircraft like the eCTOL are perfect for connecting our communities across the Lower Mainland and the island with minimal noise and environmental impact.”

Below: InDro’s Scott Simmie about the BETA Technologies CX300 eVTOL during flight. There’s a reason he’s smiling. Image two: A view of the fly-by-wire cockpit from behind

INDRO’S TAKE

 

We’ve long been advocates of the coming world of Advanced Air Mobility and applaud both the sustainability – and the use-cases. There’s a real need to move critical cargo and people to regions underserved by the traditional aviation model. And, to say we were impressed with the BETA Technologies design, approach and culture would be an understatement. It’s clear why Vancouver’s Helijet chose BETA when it decided to expand into the world of electric aircraft.

“BETA Technologies is truly at the forefront of the coming wave of eCTOL and eVTOL aircraft,” says InDro Robotics Founder and CEO Philip Reece. “We were incredibly impressed not only by the thoughtful design, but the incredible amount of vertical integration we saw at BETA. We look forward to seeing the CX300 flying from Vancouver in the not-so-distant future – and on missions elsewhere in Canada as well.”

There’s much more we saw on this trip – including its impressive charging system/network, which not only charges its aircraft but can also charge EVs. The company is brimming with innovations, and we look forward to telling you more down the road.

JR Hammond and CAAM advocate the path toward Canada’s Advanced Air Mobility future

JR Hammond and CAAM advocate the path toward Canada’s Advanced Air Mobility future

By Scott Simmie

 

The world of Advanced Air Mobility (AAM) is coming. Transformative and sustainable aircraft capable of carrying passengers and goods are being flight-tested daily by industry leaders like Joby Aviation, Archer and Wisk.

Machines like these – with fixed-wing eVTOL being the most popular design – will one day routinely shuttle goods, services and people over congested cities (Urban Air Mobility). They will also play an important role with Regional Air Mobility, offering access to communities that lack the demand or infrastructure for traditional aviation. Most designs are electric or hybrid, with an emphasis on sustainability.

This brave new aerospace world isn’t going to arrive overnight. There’s the question of certification, ensuring these aircraft meet demanding safety and other criteria. There’s also the challenge of determining how to safely integrate these machines within existing aviation airspace. Plus, there are questions around use-cases – how these technologies can be deployed in the most beneficial and efficient ways. Is an Air Taxi service better than delivering medical supplies? Might one aircraft carry out multiple roles?

These are big questions. But there’s an organisation, Canadian Advanced Air Mobility (CAAM), working closely with companies, regulators and other partners to help chart the path and speak with a unified voice on behalf of the industry. We caught up with CAAM’s Executive Director, JR Hammond, to learn more about what it does – and why it’s so important this body exists.

Above: Wisk’s autonomous eVTOL. Below: CAAM’s JR Hammond

JR Hammond

WHAT IS CAAM?

 

That was the first question we put to JR Hammond. Here’s his answer:

“Canadian Advanced Air Mobility is the national industry association here in Canada that brings together our industry, academic and government (partners) all around the momentum of trying to expedite the operations of these new AAM aircraft in the country of Canada,” he said.

Given the rapid development of these innovative aircraft, in conjunction with the push toward a more sustainable future, CAAM is arguably the right organisation at the right time: We are truly on the cusp of an inflection point in the evolution of aviation.

The roots of CAAM go back to 2018, when JR attended the Uber Elevate Summit in Los Angeles. Some 750 experts, manufacturers and regulators got together to discuss the potential of new eVTOL aircraft. A White Paper was unveiled, with the emphasis on the Air Taxi model.

Hammond wanted to get involved. There were some openings in the field, but they all seemed to require aerospace PhDs and US citizenship. JR didn’t tick any of those boxes but was passionate. He started to envision broader implications on the horizon – and the need for a national AAM organization in Canada.

And so, as an entrepreneur, he decided to create one.

JR returned from that conference and wrote up a business plan – which he pitched far and wide. One person, Eric Lefebvre (then Director of Business and Strategy Development with the National Research Council’s aerospace division) immediately understood the pitch and co-founded CAAM with Hammond. So that’s the origin story in a nutshell.

Since then, the concept of use-cases has broadened far beyond Air Taxis. And it’s that broader potential that really excites JR. He envisions moving critical medical supplies, people, and other goods and services. And not only in congested urban settings – but also serving regions and remote communities underserved by traditional aviation.

“The key language that we like to use is it’s not replacing any of our ground transportation, it’s actually complementing… especially outside of our dense urban city centres moving people, goods and services back and forth,” he says.

“What we know for sure is that Canada does not have the economic or population density to support that Air Taxi concept as our go-to-market strategy. We need to find some of those near-term cargo medical movement opportunities that have high value and high impact for go-to-market and then allow the ecosystem to expand.”

Below: A graphic from the CAAM website explains its purpose/vision

CAAM purpose

WAIT, THERE’S MORE

 

In addition to working closely with industry, regulators and academia, the organisation also works hard at developing  connections. Early in 2025, CAAM hosted a highly successful trade mission to California, where participants were able to tour cutting-edge AAM facilities and engage with industry leaders.

“We are really leaning in to how we connect Canadian champions with some of the global leaders in Advanced Air Mobility like the OEMs of Joby, Archer and Wisk.”

Such missions, he says, serve three key purposes:

  • Seeing the progress of these companies in person and making connections
  • Exploring how Canadian companies can become part of the value chain
  • Examining potential for bringing these OEMs into Canada

CAAM membership has expanded rapidly. And while initial members were largely in the AAM or RPAS space, traditional aviation companies have been coming on board in increasing numbers.

“A lot of conventional aviation organisations are looking to expand and be a part of this new developing Advanced Air Mobility ecosystem,” he says. “The overlap between commercial aviation and Advanced Air Mobility is actually coming closer together.”

 

MOVING FORWARD

 

The other news, big news, is that in June an important document was released. Entitled “Roadmap for Advanced Air Mobility Aircraft Type Certification,” it’s a collaborative effort between the aviation regulatory bodies of Canada (Transport Canada), the US (FAA), New Zealand, the UK and Australia.

The roadmap’s Executive Summary explains the document “sets forth a unified and strategic approach to foster collaboration, safety assurance, technological innovation, and AAM inclusive bilateral agreements. In the face of emerging AAM technologies, including electric Vertical Take-Off and Landing (eVTOL) aircraft, the Roadmap outlines a clear path to align aircraft type certification standards, harmonize airworthiness requirements, and facilitate information sharing among network members to maximize the transferability of type certified AAM across the Network, whilst acknowledging an incremental approach to the type certification of AAM aircraft.”

JR Hammond says the document is hugely significant.

“This is something we’ve been waiting for quite a while to go public with,” he says. “We all have common interests in how these new Advanced Air Mobility aircraft will be certified…So it’s a good stick in the sand to start the progress.”

Below: Key points from the Roadmap’s Executive Summary. Image via the National Aviation Authorities Network under Creative Commons 4.0

 

AAM Roadmap

INDRO’S TAKE

 

We are very excited about the coming world of AAM – and particularly about the potential for positive use-cases with Regional Air Mobility, getting critical goods and services (and people!) to regions that have existing barriers to traditional aviation. We’re impressed with the work being carried out in the US, Canada and elsewhere to bring these sustainable innovations forward.

“These are still early days, but AAM has incredible momentum and will someday transform our airspace and enhance use-cases,” says InDro Robotics Founder and CEO Philip Reece. “InDro is pleased to be a Project Partner with CAAM under JR’s leadership, and we look forward to playing a significant role in the AAM space in the future.”

In case you missed it earlier, you can download that AAM roadmap here.

You can also hear JR Hammond discuss CAAM at greater length with Scott Simmie in this InDro Sound Byte micro-podcast.

InDro’s Kate Klassen gives briefing to lawyers on drones and AAM

InDro’s Kate Klassen gives briefing to lawyers on drones and AAM

By Scott Simmie

 

Want a quick overview on drones? One with a specific emphasis on the state of Canadian regulations and where things are headed – including Advanced Aerial Mobility?

Well, the bad news is that you missed an excellent presentation by InDro’s Kate Klassen February 7th. Klassen was invited by the Canadian Bar Association, BC Branch (CBABC), to present on precisely that topic. The event was a meeting for the CBABC Air Law Section and was titled: Drones, Robotics and Advanced Air Mobility Confirmation. CBABC Members gathered in Vancouver, and broadcast the meeting live to an online audience.

The good news? We watched it. And, because Klassen works for InDro Robotics, she kindly passed along the deck used in the presentation. By simply reading this story, you’ll get the high-level low-down on the following topics:

A BIG TOPIC

 

That’s a lot of information to go through, but Klassen is a pro. Plus, we’re not going to dive into absolutely everything she talked about – just the highlights for a busy person like you.

Kate Klassen was one of those people who could see the potential of drones quite early. That’s not surprising, given that she was already a professional in traditional aviation. She’s a Flight Instructor and commercial pilot with ratings for multi-engine aircraft, as well as flying by instruments only (IFR) and at night.

That’s a lot of experience, and her expertise is widely recognised in the aviation and drone worlds. In fact, Klassen has has been consistently active in the sector-at-large: She’s been on the Board of Directors of the Aerial Evolution Society of Canada (formerly Unmanned Systems Canada) since 2018. She’s also served as co-chair of Transport Canada’s Drone Advisory Committee, also known as CanaDAC, as well as with COPA (Canadian Owners and Pilots Association).

“I got into drones about 10 years ago, and it was a pretty traditional route into drones,” she said. “At the time, you were either a really excited hobbyist, you came from (a sector) like defense, or you were working in traditional aviation and then made the jump over to the ‘unmanned’ – that’s what we called it at the time – side. 

“I like to joke that everything that I’ve flown has been unmanned,” she quipped.

She also promised “There are some really exciting things on the horizon for the drone industry.”

And when it comes to that…she’s definitely not joking.

Below: Kate, just after completing her seminar

 

THE BASICS

 

Klassen quickly jumped into the current regulatory space, outlining the existing rules in Canada. She explained that regulations covering Remotely Piloted Aircraft Systems (RPAS, or drones) are covered in legislation under Part IX of the Canadian Aviation Regulations.

“It’s really regulating three things: The pilot, the product and the procedures,” she explained, adding “Drones are regulated based on risk…it’s the weight of the drone and where you intend to operate it.”

There are currently three classes of drones: Those weighing 249 grams and less (micro-drones), those from 250 grams to 25 kilograms (small drones), and 25.1 kg to 150kg (medium).

Under current regulations, a Transport Canada-issued RPAS Certificate (an operator’s license for drones) is not required if you’re flying a micro-drone. They can be flown over people and even in dense urban settings (pending local bylaws) – providing you use common sense.

“So really there’s only a few rules for micro-drones. There’s the Part VI regulations that apply to all aircraft that say ‘don’t fly in restricted areas like over forest fires’. And then in Part IX there’s only one regulation, and it’s the ‘don’t be an idiot rule’. Don’t be wreckless or cause a hazard to other airspace users or people below you. And those are really the only rules that apply.”

Operating anything 250 grams or heavier requires either a Basic or Advanced Certificate from Transport Canada. A Basic certificate allows you to fly in uncontrolled (Class G) airspace up to 400′ above ground level (with some restrictions that keep you a safe distance from people on the ground). An Advanced Certificate permits flights to the same altitude in controlled airspace – where aircraft are subject to NAV Canada’s Air Traffic Control system – albeit with fewer restrictions. For example, you can fly closer to people.

Under current regulations (subject to change in the not-so-distant future), special permission from Transport Canada is required if you want to fly your drone Beyond Visual Line of Sight (BVLOS, or farther than you can see it with the naked eye), or if you are flying a drone weighing more than 25 kilograms. If you’re flying anything heavier than a micro-drone in controlled airspace, you also need to notify and receive the green light from NAV Canada, which is a snap with the NAVDrone app.

There’s more, of course. If you’re interested in learning the rules in greater depth, we recommend you take a read of RPAS 101, created by the Aerial Evolution Association of Canada in conjunction with Transport Canada. Klassen was one of the key contributors to the document, which you can find (in both official languages) here.

Below: Kate Klassen, in her element.

 

TRENDS

 

Remember those micro-drones? They’ve become not only exceedingly popular, but also increasingly powerful. With extended flight times, high resolution cameras – and the ability to fly pretty much anywhere, including dense urban environments without additional permissions – Klassen says they’ve rapidly become an unexpectedly important part of the drone sector.

She specifically pointed to how a company called Spexi Geospatial is leveraging this technology – along with the ability for pilots to fly without a Transport Canada RPAS Certificate – with a specialized software platform. The Spexi software allows pilots to fly pre-programmed flights that capture imagery at scale. The software carries out the flight, including capturing photos at precise intervals so they can be stitched together into a hexagonal ‘Spexigon’. This ability to capture imagery at scale has already been used to create orthomosaics of entire cities in just days. Depending on the mission, pilots who complete certain missions can be paid cash or points (which act as credits for their own Spexi missions) – with potential plans for crypto tokens down the road. In fact, Spexi just announced plans for what it believes is the largest ever drone imagery capture attempted (details here).

“They’re kind of maximising this regulatory structure, the ability to operate micro-drones in environments that would be a lot more challenging if the aircraft were heavier,” explained Klassen.  “Someone can take an $800 drone and turn it into a business.”

 

AI AND MACHINE VISION

 

With the growth of powerful software, including AI and Machine Vision libraries (where objects can be detected, identified and classified), Klassen said drones have been finding new use-cases. For example, a drone can be sent on a mission where it’s looking for change detection in infrastructure. Do these power line insulators look the same as they did on the last flight? Is there corrosion or cracks in critical infrastructure like bridges? Are any of those bolts sheared or damaged? Is that component too hot?

Drones with the right software and sensors can now detect such anomalies automatically. They can even forecast routes that a missing person is most likely to have taken during Search and Rescue missions based on last known location, heat signatures, path detection, etc. There’s also the business of building inspection, where a drone can automatically detect everything from poor insulation to missing shingles or other damage. There are even specialized drones equipped with sensors for Non-Destructive Testing, where a probe is physically applied to a surface during flight to detect for rust, paint thickness, weld integrity – and more.

So as AI has increasingly been applied to drones, their capabilities and utility have greatly expanded. They’ve also made the job simpler.

“So erecting scaffolding and shutting down sidewalks and preventing work from happening while the inspection’s taking place – you can cut down on a bunch of expenses that way as well,” she says.

 

MULTI-STAGE ROBOTICS

 

This is where ground robots and aerial robots work in concert. And it’s one of the coming trends identified by Klassen.

“This is where you see ground robots and aerial robots working together to achieve different tasks. You can even have a drone…moving through a warehouse scanning tags and giving you live inventory management of that warehouse, which is a job that it turns out humans really hate to do,” she said.

“So it’s a great way to increase the retention of employees they want to keep, and give those dull, dirty, dangerous jobs to a robot.”

Below: Ground robots, like the InDro Robotics Sentinel, can work in conjunction with drones as a force multiplier

THE FUTURE

 

The ability to routinely fly Beyond Visual Line of Sight without the need for a Special Flight Operations Certificate from Transport Canada is something the industry has been focussed on for years. Such flights (and there are many carried out with SFOCs currently), permit drones to take on long-range tasks like delivery, inspection of railroads and pipelines – and much more. There’s great demand for such services, but the SFOC process slows things down.

Transport Canada understands this. But, as the federal regulator, it’s rightfully concerned about avoiding conflict with traditional aircraft, as well as people and property on the ground. But newer technology, including specialized Detect-and-Avoid sensors and software (along with parachutes), is paving the way for such flights to become routine.

In fact, Transport Canada is looking at revising Part IX of CARs in 2025 to permit many BVLOS flights without the need for an SFOC. There will also be provisions for drones up to 150 kilograms, meaning significant cargo could be delivered.

“I think it will be a while before you get your pizza delivered or Amazon deliveries via drone,” she says. “But routine BVLOS will be included in a regulatory package that we’re anticipating in 2025.”

 

AAM

 

Another big piece of the future of aviation – globally – is the coming world of Advanced Air Mobility, or AAM. This is where transformative and largely carbon-neutral aircraft will be capable of shuttling people or cargo between locations that have until now been poorly served (or not served at all) by traditional aviation. For example, there are remote communities that do not currently have airports because the economic model just isn’t there. AAM could change that; the goal is for such services to be accessible and affordable – and the vast majority of these aircraft won’t require runways or the other infrastructure (fuel depots, control towers) typical of small airports.

Perhaps the most well-known coming application is that of an air taxi – a Vertical Takeoff and Landing (VTOL) aircraft that can transport people (or equivalent cargo). Such aircraft (many are currently in development and testing) would transit between Vertiports, small pads that will start appearing in major cities and nearby regions in the years to come. Though the regulations have not yet been ironed out, it’s anticipated (and the US Federal Aviation Administration is planning for) such vehicles to fly within specific corridors that keep them safely separated from the routes of traditional aircraft (including helicopters). Initial flights will be carried out by a human pilot actively piloting onboard (Human In the Loop), followed by a human pilot monitoring the flight onboard (Human On the Loop). Eventually, it’s anticipated that these aircraft will be fully autonomous (Human Out of the Loop), with a person simply monitoring the flight – still with the ability to intervene should a problem arise – from the ground.

In fact, we wrote recently that BC’s Helijet has placed the first orders for some of these aircraft – a signal that we are definitely on the cusp of this future. So remember that AAM acronym; it’s coming.

“This is a huge term…and it’s going to be very much the future of aviation,” said Klassen.

Below: The ALIA 250 eVTOL (electric Vertical Takeoff and Landing) aircraft, manufactured by US-based BETA Technologies, has been ordered by Helijet International. The vehicle transitions to forward, fixed-wing flight for greater efficiency once a sufficient altitude has been reached

BETA ALIA Helijet

THE PRESENT

 

We should mention that AAM is not solely about these larger aircraft; drones will be part of the AAM world, with a high degree of automation coordinating flights between these various automated aircraft.

In the meantime, the drone sector continues to grow, with many successful businesses across the country – ranging from large service providers like InDro Robotics right through to smaller one- and two-person operations. There are plenty of opportunities, with proper training and even a small investment, to start a company.

And that’s where FLYY comes in. Though Klassen only mentioned it in passing, she runs a successful online training operation that takes potential pilots with zero or minimal background with drones or aviation through all of the knowledge requirements to obtain their Basic or Advanced RPAS Certificate (including arranging the Flight Review required by Transport Canada to obtain that Advanced certification). We’ve previously written about this program here.

Klassen is the instructor of the course, which is arranged in logical, bite-sized steps (interspersed with her trademark humour) to keep aspiring pilots engaged. Klassen is passionate about sharing her expertise, and it shows in these courses. If you’d like to take the next step, you can check out her many course offerings here.

There are plenty of online offerings out there. But there’s only one we’re aware of where the person behind it has trained more than 10,000 drone pilots in Canada. Though Klassen doesn’t like to promote herself, we can state with authority that she is immensely respected in the field – both by professional drone operators and by the many people who’s worked with at Transport Canada.

“Our zero to hero package is $599 and includes both ground school, prep for your Flight Review, and the Flight Review itself. A DJI Mini 3 Fly More combo is like $850,” she said.

In other words, it won’t break the bank to gain the right knowledge and get flying. Plus, Klassen is currently working on Micro-Credential courses for students to pick up skills using specialised sensors and data analysis – the kind of skills that can land a job, but are difficult to obtain without one.

Below: Kate Klassen in a screengrab from her FLYY course

Kate Klassen Drone Training

INDRO’S TAKE

 

Kate Klassen is the Training and Regulatory Specialist at InDro Robotics. So you’d expect we’d have good things to say about her. The reality is, we’d have good things to say about her regardless of where she worked. She is a the very definition of a subject matter expert, and she loves nothing more than sharing her knowledge and helping to shape the future of aviation in Canada. (Well, that’s not quite true: She has two young children and a husband who collectively make aviation and drones her second love.)

“As expected, Kate covered a lot of ground in her presentation – and did a fantastic job of providing a clear look at the state of the industry, along with where it’s headed,” says InDro Robotics CEO Philip Reece.

“Klassen is a true professional in every sense of the word. We feel fortunate that she’s on Team InDro, where her vast regulatory knowledge of both traditional aviation and drones is immensely helpful both to our team – and the drone sector at large.”

If you’d like to download Kate’s presentation, you can do so here. And if you’re an educational institute, or a business considering training with multiple students, Klassen is always happy to discuss a break on price. You can contact her directly here.