Police drone collision raises questions

Police drone collision raises questions

By Scott Simmie

 

There’s no question that drones have become an essential tool for First Responders.

They’re used to assess fires, document accidents, search for missing people and even get a sense of damage following a natural disaster like a tornado.

They’re also used by police on occasion to actively search for a suspect trying to evade capture. In such scenarios, you can imagine that officers might be highly focussed on apprehending the suspect.

That may have been a factor in an incident that occurred August 10, 2021. It involved a York Regional Police officer with an Advanced RPAS certificate, a DJI M210…and a Cessna. The incident is outlined in detail in a new Transportation Safety Board report.

(If you’ve read the report and just want to hear our take, skip to the end.)

Police Drone Collision

What happened

 

On August 10, 2021, a student pilot and flight instructor were in a Cessna 172N on a typical training flight. They were on final approach to Runway 15 at Toronto/Buttonville municipal airport. And then, in the words of the TSB report, this happened:

At approximately 1301 Eastern Daylight Time, the student pilot and flight instructor heard and felt a solid impact at the front of the aircraft. Suspecting a bird strike, they continued the approach and made an uneventful landing, exiting the runway and proceeding to park on the ramp. After parking the aircraft, they observed damage on the front left cowl under the propeller; however, there were no signs that a bird had struck the aircraft.

So what did?

Shortly afterward, a member of the York Regional Police reported to airport staff that he believed a collision had occurred between the remotely piloted aircraft he had been operating and another aircraft. The remotely piloted aircraft, a DJI Matrice M210 (registration C-2105569275), had been in a stationary hover at 400 feet above ground level when the 2 aircraft collided. The DJI Matrice M210 was destroyed.

There were no injuries to either pilot on the Cessna 172N or to persons on the ground.

Here’s a look at the runway, along with the location of the RPAS. (Looks like the report missed a “t” on the word “flight.”)

 

 

Police Drone Collision

The drone

 

York Regional Police (YRP) were looking for a potentially armed suspect, and called the YRP’s Air Support Unit (ASU) to assist at 12:02 pm. The pilot of the drone arrived at the scene at 12:20. The first flight of the DJI Matrice M210 took off at 12:32. Shortly after takeoff, the pilot asked some officers standing nearby to watch the drone during flight; one of the officers said they’d do the task.

After some initial reconaissance, the officer landed the flight 16 minutes later to change batteries. It was now 12:48.

“During this time,” says the report, “the pilots in the Cessna had completed their exercises in the practice area and were returning to the airport. They made the appropriate radio calls declaring their intention to fly over the airport and join the right-hand downwind for Runway 15. There was no other traffic broadcasting on the CYKZ mandatory frequency (MF) at the time, nor had the pilots heard any other transmissions on the frequency during their return flight.”

It’s worth noting the “Mandatory Frequency” here. This airport does not have a tower and its own Air Traffic Control. Aircraft are to announce their intentions over a mandatory frequency (124.8 MHz) and monitor that same frequency for situational awareness of other air traffic.

At 12:56, the DJI M210 took off for its second flight. The pilot, who was watching a flat-screen tv displaying the drone feed, took the drone up to 400′ AGL.

The pilots in the Cessna, meanwhile, were scanning for other aircraft as they began their approach toward the runway. They made a radio call with their intentions to land at 12:57. When the drone reached 400′, it was put into a stationary hover.

But that hover, unfortunately, was directly in the flight path of the Cessna. The report notes that a stationary black object, when viewed against urban clutter, would likely not have stood out to the pilots. When the aircraft was approximately 1.2 nautical miles from the airport, traveling at about 65 knots (120 km/hour), it impacted the drone at 13:01.

The Cessna landed without incident. But upon exiting the aircraft, this damage to the cowling was observed. There was also a slight scratch on the propeller.

Police Drone Collision

And the drone?

 Well, it was pretty much destroyed – as shown in this Transportation Safety Board photograph of the pieces that were recovered:

Police Drone

Other factors

 

The DJI drone was equipped with an Automatic Dependent Surveillance-Broadcast (ADS-B) receiver. These pick up signals from ADS-B equipped aircraft in the vicinity, and issue a warning to the drone pilot. The Cessna was not equipped with an ADS-B unit, however, so no warning would have been generated.

The Report says the drone pilot was monitoring the airport’s Mandatory Frequency during operations, using a handheld VHF radio. The drone pilot also had his Restricted Operator Certificate with Aeronautical Qualification (ROC-A), allowing him to operate an aviation radio. Unlike the pilots in the Cessna, drone operators are not required to broadcast their intentions when in controlled airspace. In fact, NAV CANADA does not encourage RPA pilots to broadcast on those radios, as it can contribute to clutter on the airwaves.

But the report does point out an additional key responsibility for Remotely Piloted Aircraft operators:

RPA operators are required to receive authorization from the provider of air traffic services (ATS) to operate in controlled airspace (see section 1.17.2.1). The request for this authorization must include contact information for the pilot, and “the means by which two-way communications with the appropriate air traffic control unit will be maintained.”

When authorization is granted from ATS, a telephone number for the relevant ATC unit is included in the authorization. This telephone number is to be used in case of an emergency or loss of control of the RPA. This exchange of contact information between RPA pilot and ATS is meant to satisfy the Canadian Aviation Regulations (CARS) requirement that two-way communication be maintained.

Flying a drone in controlled airspace requires obtaining clearance through NAV CANADA’s NAV Drone app. If the operation looks very complex and might involve greater than normal risk, the app will bump that request for a more careful review by Air Traffic Services.

But that’s not what happened. According to the Report, the NAV Drone app was not used at all in this incident.

The pilot of the occurrence RPA was aware of the NAV Drone application and knew that the operation on the day of the occurrence would take place entirely within the CYKZ control zone, therefore requiring authorization from ATS.

Due to the nature of the police operation underway, which involved a potentially armed individual, the RPA pilot felt a sense of urgency to get the RPA airborne as soon as possible. As well, the RPA pilot had not observed any traffic in the area during the set up of the RPA and had heard no recent transmissions on the hand-held VHF radio. As a result, the RPA pilot did not request authorization.

Interestingly, investigators later tested the NAV Drone app, requesting to fly an RPA at 400′ AGL at the location where the collision had occurred. The request was denied, and the app suggested they re-submit the request with a maximum altitude of 100′ AGL – a position far less likely to have caused problems for crewed aircraft on approach.

Police Drone Collision

Role of visual observer

 

The TSB Report spends some time on this topic. It also documents what happened on that day in October. It appears that the role of visual observer was not explained to the officer that took on the role. And it also appears that officer spent most of his time looking at the video feed from the drone, rather than maintaining Visual Line of Sight with the drone itself:

During the day of the occurrence, the RPA pilot asked for another officer to be a visual observer. Although a nearby officer acknowledged the request, the RPA pilot did not confirm who, among the officers present, would assume that role, nor did he inform that specific officer what their duties or responsibilities would be. The officer was not aware of the requirement to maintain visual contact with the RPA.

The officer who was acting as the visual observer was observing the TV display for much of the time that the RPA was airborne and did not see or hear any airborne traffic, nor could he recall hearing any radio calls over the RPA pilot’s portable VHF radio.

The report also notes that the drone pilot did not use the York Regional Police’s mandatory RPAS Pilot Checklist, and instead relied on memory to prepare for the flight. It further suggests the pilot may have been ‘task saturated,’ – “restricting his ability to visually monitor the RPA and hear radio calls on the control zone’s MF and the sound of incoming aircraft, both of which preceded the collision.”

 

Some findings…

 

It is not the Transportation Safety Board’s role to find fault or blame. But it does identify contributing factors and/or causes that likely all played a role in the collision. Here are the four key findings on that count:

Police Drone Collision

“Findings as to risk”

 

The report also notes two findings under the above category. It emphasizes that what appears below does not appear to have contributed to the collision, but could lead to adverse outcomes in the future:

Police Drone Collision

Kate Klassen weighs in…

 

InDro’s Kate Klassen is a drone and airplane pilot and has about 1000 hours instructing on the same type of plane involved in the collision. She’s also very familiar with the minutiae of RPAS regulations in Canada.

Klassen read this report with great interest and noted a few useful takeaways. In particular, how it appears the apparent focus on the task – catching a criminal suspect – may have obscured what should have been standard procedures.

“Typically First Responders have established with the Air Traffic Service providers that they can do the job and inform as soon as possible, rather than following the NAV Drone pre-authorization process the rest of us follow.” she says.

“So I think it’s less that they launched as they did, and more that they didn’t have the situational awareness to operate there safely. They were perhaps too invested in getting the job done, where they figured ‘It’s not going to happen to me’, and weren’t taking advantage of all the tools at their disposal. They probably didn’t realize how risky this location was, especially to be operating at that altitude.”

 

Briefing visual observer

 

Klassen also notes that the selection of a visual observer was not accompanied by any sort of thorough briefing – which would have included maintaining Visual Line of Sight with the RPA, monitoring the radio, and listening (along with watching) for any crewed aircraft.

“I think the situational awareness piece is important,” she says. “Have the radio on the right frequency, have the visual observer actively monitoring it. It can’t be just ticking the box that you’ve assigned someone the task.”

“A more effective trained role would be explaining or ensuring they have skill to listen in on the radio and build that situational awareness of where the aircraft are. Also monitoring the sky, listening for aircraft noise. If you can hear a crewed aircraft but not see it, that’s when it’s sketchy.”

Klassen has worked with many First Responders across Canada, and understands the pressure they can be under to get a drone in the air. The challenge is to follow Standard Operating Procedures despite that pressure – particularly in controlled airspace this close to an airport.

 

InDro’s take

 

Though no one was injured during this collision, it was a serious incident. The drone could just as easily have hit the windshield, the leading edge of the wings near the fuel tanks or damaged the landing gear. Thankfully, that didn’t happen.

The Transportation Safety Board report is both methodical and meticulous. While not pointing the finger of blame, it does highlight some procedures that most certainly could have been handled better – and likely would have, were the flight not so high-priority.

Accidents and investigations should be, in our view, viewed as learning opportunities. And in this case – whether you’re a First Responder or not – there are clearly lessons to be learned.

Long winter? Pre-flight checklist for drone pilots

Long winter? Pre-flight checklist for drone pilots

By Scott Simmie

Depending on where you live in North America, it’s that time of year when many of us are dusting off our drones for the first time since we put them away last fall.

Some pilots are meticulous about this process. But we suspect – given the large number of recreational pilots who fly only occasionally – they’re in the minority. So we thought it would be useful to pull together a quick guide for those preparing to return to flight.

For that, we contacted our resident expert, Kate Klassen. Kate is widely known in the both the traditional aviation and drone worlds. She’s a mult-rated commercial pilot, a pilot instructor – and a drone expert. (In addition to flying and creating one of Canada’s most popular online drone courses, Kate is also a member of Transport Canada’s Drone Advisory Committee, or CanaDAC.)

Kate has also created and fronts the excellent new FLYY online drone learning resource portal, which is fully up-to-date for those seeking drone skills (including those who want to obtain their Basic or Advanced RPAS Certificate) in 2022. Here she is:

FLYY
Because of her wide-ranging expertise, Kate is one of the best people we could think of to help us safely return to flight.

“The fact your drone hasn’t been flown, and you haven’t been flying, increases the risk of your first flight. So I think it’s good to have a plan,” she says. “You want to make sure that you’re setting yourself up for success by taking the time to prepare for that first flight and the ones that follow.”

Makes sense to us. And while it’s tempting to simply charge up and hit the sub-400′ skies, Kate says a more methodical approach will save you from unnecessary problems.

 

What do pilots of real aircraft do?

 

Well, whether they’re flying a Cessna or an Airbus, they have a rigorous protocol to ensure everything is looking good prior to takeoff. And the same systematic approach applies to flying drones (which, of course, are also aircraft).

We’ll have a full checklist in a moment, but Kate recommends that you think of this overall process in terms of systems. Those systems include software (ie firmware), power (batteries), propulsion (props and motors), fuselage – and even regulatory (Transport Canada or FAA authorization, where required).

“Regardless of whether you’re using commercial off-the-shelf systems or standalone flight packs, you’ll want to do as much as you can to confirm the battery’s health before you trust it in flight,” she says. “So that would be not just charging, but balancing the cells and using any resources like the battery health tools within a flight app to confirm their reliability before you get airborne.”

Kate also recommends a physical inspection of the batteries themselves. This is great advice. A couple of years ago, we pulled our own Mavic Pro from the basement, updated the firmware and pulled out the charger. But something about one battery caught our eye: There was a hairline crack in the plastic shell itself. The battery had never been dropped, so we had to assume there had been some swelling. Better to safely dispose of such batteries than risk charging them.

Mavic Pro
This also happened to us with a different drone.

We had loaned out a Phantom 4 Professional to a trusted and experienced friend. When it was returned, we simply put it away without checking it. Come spring, we noticed one battery was sticking when inserted. A close inspection revealed, again, a hairline crack. (There was also a really fine sand stuck to the lens protector.)

Phantom Drone
Had we not been looking carefully, we could have easily tried to charge – or even put the drone in the air – with a damaged battery. If there’s any physical damage like this, particularly in conjunction with apparent swelling, safely dispose of the battery at a municipal electronics waste facility. Don’t simply throw them in the garbage, unless the possibility of putting out a rogue garbage-can fire appeals to you.

Firmware and cards

We don’t want to rain on Kate’s checklist parade. But we do feel it’s worth emphasizing the importance of ensuring your drone and app are fully updated before you get to the field. It’s a real drag if you get out there and are faced with a 356 megabyte download by phone before you can fly. FPV pilots might also want to do a firmware version check for their goggles and look for any updates for their flight controller etc. via Betaflight Configurator. Ensure you have the NAV Drone app and manuals on your mobile device and that they haven’t been sent to the cloud due to their disuse.

Also – and we’ve been bitten by this one – be sure to have your MicroSD cards with you. If you’re anything like us you may have borrowed a cable or card from your drone kit while it sat and you’ll want to make sure you’re stocked up before you head out.

That’s not all. Just because you’ve passed your Transport Canada exam and have your Basic or Advanced RPAS certificate – that doesn’t necessarily mean you’re legal to fly.

“If it’s been 24 months or more since your last recency exercise, like getting your certificate in the first place, you’ll need to complete a recency exercise before you’re legal to fly,” says Kate.

Drone Delivery

On with the show!

Okay. You should have the basics by now. Kate has been kind enough to put together a full checklist that you can print out for your pre-flight checks. Here’s a screen grab, and you can download the file here.

 

Drone Checklist

And come Fall?

We hate to think that far in advance, but the reality is that winter will again come. But that doesn’t mean you need to shelve your flying skills. Kate recommends you consider practicing indoors or use a simulator during the off-season.

“A non-GPS cheapie micro-drone that you can fly around inside will keep your thumb and stick skills fresh. Some drones even have a simulator that can be used to practice your skills as well, and there are also wireless dongles available for practicing FPV skills on your laptop or desktop.

 

InDro’s Take

 

We fly professional missions on a regular basis. Most of these flights involve large, expensive heavy-lift drones. Whether Kate is at the sticks or someone else, we always go through a thorough pre-flight checklist. We do a preliminary check before heading out to the field, and a more thorough examination prior to arming the drone. We’ve caught a few things while doing this that saved us from having issues in the air.

We hope you make this a regular part of your own safe piloting pratice, if it isn’t already. Once again, you can download Kate’s pre-flight checklist here. And, if you’re interesting in upping your skills (or obtaining your RPAS certificate), check out Kate’s outstanding FLYY program.

InDro Robotics hits the podcast circuit

InDro Robotics hits the podcast circuit

By Scott Simmie

It’s been a busy week for InDro Robotics on the airwaves of the internet.

Two of our best talkers were asked to be guests on two separate industry podcasts, and the final products of both were released within two days of each other. Our CEO, Philip Reece, was the first up to the microphone, followed by Strategy and Implementation Specialist (and widely recognized training professional) Kate Klassen.

Because Philip went first (and because he’s the boss), we’ll start with him.

Philip was asked to appear on a podcast called Inflection Points. The highly rated podcast (Five Stars!) describes itself as exploring the “vision of the future of network-based technology.”

Because many of our products (and much of our R&D) focus on connected devices, Philip was a good choice for that broader topic. But the show’s hosts wanted to a deeper dive into an area where InDro’s CEO is an expert: The world of drones.

Here’s the synopsis for the episode:

“Just a few years ago drones were about hype. The reality is that this network-based tech is making a real difference in our lives today. Join hosts Carla Guzzetti and Tim Harrison as they hear from Indro Robotics CEO Philip Reece exactly how this change is happening and just when those drones will be dropping those shoes you just bought right to your door.”

Philip had an answer for that – and much more.

 

Philip Reece

It’s always great when a podcast reveals something new or unexpected. And we can tell you there were more than a few gems in this episode. But perhaps the most entertaining was when Philip explained how he switched from the world of running a seaplane airline to the world of drones (and, eventually, other robotics).

We’d love to tell you that story here, because it’s really entertaining – but we’ll let Philip tell you instead. There’s much more, of course, including a deep dive into the future of networked devices, including how aerial and ground robots will routinely be working collaboratively.

Before we get to the show, here’s a snippet that gives you an idea what to expect (and also flags that there’s cool stuff about Uncrewed Ground Vehicles, as well):

On with the show…

Okay, enough preamble. Time to hear Philip, Carla and Tim – and learn when a drone might actually deliver Carla those shoes.

Wait, there’s more!

Philip is a great and knowledgeable talker. But he’s got some competition from Kate Klassen.

Kate is widely known in Canadian circles for her contributions to both traditional aviation (she’s a multi-rated commercial pilot and instructor) as well as her immense impact on the drone world. Both Kate and Philip serve on Transport Canada’s CanaDAC Drone Advisory Committee and as board members on the Aerial Evolution Association of Canada (formerly Unmanned Systems Canada).

And Kate, who previously created and fronted a highly successful online drone course in Canada, recently outdid herself with FLYY – a brand new and fully updated set of online courses you can read about here.

FLYY is on track to become the new leader in online learning, and even includes a supportive internal social network where pros like Kate share tips with beginners on everything from safety protocols through to nailing the perfect aerial photograph. When we say it’s a comprehensive learning and resource portal, we mean it.

With a background like that, it should be no surprise that Commercial UAV News wanted to hear more from Kate about FLYY, the importance of solid training – and much more. Here she is, on the latest edition of Beyond Part 107:

If you just skipped that podcast but are considering checking out FLYY, we’d encourage you to go back.

Why? Well, let’s just say there’s a little Easter Egg (perfectly timed!) waiting somewhere in that show – a discount code for FLYY. Plus, of course, it’s likely you’re learn something from Kate.

Hope you enjoy the podcasts; both Kate and Philip are real pros.

New drone instruction portal lets new pilots go ‘FLYY’

New drone instruction portal lets new pilots go ‘FLYY’

By Scott Simmie

Thinking about earning your Basic or Advanced RPAS Certificate but don’t know where to start? Want some tools to help prep for your Transport Canada required Flight Review? Looking for some answers in a friendly, supportive community of drone pilots?

Look no further. InDro Robotics is very pleased to announce FLYY, an online drone learning portal with an incredible amount of offerings and features. What’s more, the person behind this major initiative is none other than InDro’s Kate Klassen, a highly respected professional and instructor in both the traditional aviation world as well as the drone sector.

FLYY

If seeing that image of Kate in a studio rings a bell, that’s understandable: Kate developed and fronted one of the most successful online drone courses in Canada. Now, she’s taken all of that experience and expertise and put it into a comprehensive learning platform with multiple course offerings. There’s something for everyone, ranging from the absolute beginner to seasoned pros looking to up their game. There’s even a brand new and supportive Forum, where Kate and others can weigh in with helpful tips or answer questions. No trolls here; just a collaborative and growing community eager to learn and share.

We’re excited. And so is Kate.

“I’ve constructed the FLYY courses and guides to ensure success for those seeking to become Basic or Advanced RPAS pilots,” she says. “It was so fun to get back into content creation mode and then into the studio to record this training – no promises my jokes have gotten any better though!”

Special FLYY launch discount

 

We could go on and on. But we also issued a news release about this – so no point reinventing the rotor! We’ll paste that release in a second so you can see all the details, but wanted to point out that FLYY is offering 15% off until March 1. So if you’re in Canada and want to be ready for spring piloting, hop on over to the FLYY website and take a look at some of the course offerings.

Believe us, there’s something for everyone, including helpful FLYY Guides and even Flight Reviews. Once you’ve made your selection, apply the code FLYY15 at checkout.

Drone Training

The news release

 

Okay, for those of you looking for even more information, you can see our news release below, or download it here.

Happy piloting…and congratulations, Kate Klassen. Having been through the site, we can tell you she has done an absolutely amazing job with these comprehensive, Transport Canada compliant course offerings.

FLYY
Drone Training
InDro launches monthly newsletter

InDro launches monthly newsletter

A word (or two) from InDro Robotics

 

Welcome to the first in a new series of monthly newsletters from the InDro Robotics team!

These newsletters will cover the latest news from InDro Robotics – including the inside story from our R&D facilities (at least the stuff we can tell you about!).

First up? The big news: We have officially released the new InDro “Commander” – a module that vastly simplifies the challenges of building and customizing a teleoperated UGV. Commander is about the size of a small toaster oven. It bolts onto any platform and simply connects with two wires for power.

But don’t let that simplicity fool you: This is one mighty box, containing not only an NVIDIA processor for Edge computing, but high-speed USB ports for sensor management. Just as importantly, it contains the Robot Operating System (ROS) libraries required to make everything work together.

You might have seen our news release announcing the product. If not, here’s a teaser:

InDro Robotics

(You can find the entire release, which includes links to images, a video and a complete story on the product, right here.)

“The product also leads the way with a unique feature for developers: It is a platform agnostic solution – meaning that it can work with any platform that developers need,” explains Anthony Guolla, a robotics engineer specializing in Client Sales and Support. 

“Whether your platform of choice is AgileX Robotics or any other major provider, The InDro Commander has your hardware, computer, and integration covered. InDro and our partners have already taken large strides in deploying real-world solutions accelerated by Commander and we are excited to share it with the rest of the world in 2022!” 

InDro Commander

Commander and Sentinel

 

If you’ve had a chance to read the release, you’ll know Commander evolved organically from our own work designing robots for clients and for R&D. Every time we went to integrate sensors and make the robot operational, we were running into common but time-consuming steps: Finding power for the sensors, installing Robot Operating System (ROS) software, and generally making the whole package work. (Trust us, there are a *lot* of steps involved.) 

Commander has been designed to eliminate the painstaking stuff, allowing you to quickly add the sensors of your choice and operate the robot using our web-based console. 

It has also allowed us to rapidly iterate new machines, and we’re particularly proud of a Commander-powered robot we call “Sentinel.”

 

Inspections, simplified

Inspection Robot

Sentinel is a purpose-built inspection and surveillance robot, ideally suited to applications like electrical substations. These are the places where the high-voltage power carried by transmission lines is stepped-down for delivery from the substation to homes and other customers. Such facilities are often located in remote areas, difficult to reach for regular inspections by human beings.

“Right now, highly trained technicians make lengthy journeys between sites and frequently arrive without the proper resources to solve the problem on-hand,” explains InDro Account Executive Luke Corbeth.

“Seldom are these inspections, which include meter reading, temperature control and checking equipment conditions, done as frequently as they could be. Without sufficient maintenance, equipment will fail and result in an outage, which is financially detrimental to business and inconvenient for consumers.”

With Sentinel, regular inspections can be carried out remotely by a human operator who is hundreds, even thousands of kilometres away via the internet. Using Sentinel’s Pan-Tilt-Zoom camera (with 20x optical zoom and thermal sensor), the operator can check out even the tiniest detail from afar.

Check out this image, taken from the web-based Sentinel Console:

Inspection Robot

Potential clients who have been given a sneak preview are impressed.

“We’ve received an overwhelmingly positive response from partners and utility companies for this solution. As a result, we’re making it a priority to deploy more of this technology across North America in 2022,” says Corbeth.

Sentinel can be deployed on a number of platforms, depending on the terrain and user requirements. Our first Sentinel is based on the AgileX Bunker platform. We selected Bunker because it’s rugged and nearly impervious to inclement weather. The track-based locomotion system handles well in snow, mud and other challenging conditions and terrain. But Sentinel is also offered with wheels, and even quadripedal or other form factors.

If you’re interested in learning more about Sentinel’s capabilities, hit us up here.

Learning

 

InDro Robotics has long been a champion of quality instruction when it comes to drones. We believe in ensuring that prospective pilots have access to the very highest quality learning materials and methods, with Subject Matter Experts leading the way. We also believe in community, where those following a learning path can learn from, inspire, and support one another.

That’s why we’re particularly excited about an initiative we’re launching led by Kate Klassen. Kate, as you might already know, is a seasoned veteran of both crewed aviation and UAVs. She was a driving force behind the excellent educational work carried out by Coastal Drones – and is a member of the Canadian Drone Advisory Committee, also known as CanaDAC.

If you’re interested in obtaining your Remotely Piloted Aircraft Certificate, you can sign up here. (And, trust us on this, there’s much more to come!)

Drone Training

“I am so excited to be back in the instructor seat with new, up-to-date training to share with the industry,” says Klassen.

“Already this year we’ve launched ground school for basic pilots, updated our advanced ground school, have the first in a series of ‘Flyy Guides’ published and are creating a community space for more casual learning and sharing with others in the industry. And this is just us getting started!”

From the top

Finally, a word from CEO Philip Reece.

“This is going to be a very exciting year at InDro Robotics. Commander is a hugely innovative solution to the hard work of building robots – and end-users have already seen tremendous efficiencies. Sentinel takes full advantage of the Commander module, meaning clients now have access to a proven teleoperated inspection solution that can be quickly modified with additional sensors and capabilities down the road. I’m immensely proud of the work InDro’s engineers have put into these solutions.

Wait, there’s more!

“InDro is also pleased about Kate’s forthcoming community platform, which will complement our learning portal. She is a total professional, and the hard work she has been putting in reflects this. I don’t want to give too much away, but let’s just say we look forward to formally unveiling the full platform shortly.”

Give us a shout

Questions? Comments? We’re always happy to answer queries and read feedback. Hit us up here.

If you enjoyed reading this InDro Robotics news and would like to receive these bulletins automatically, click here. (Don’t worry, we only send these once a month.)