New drone, robot testing and training facility to open June 21

New drone, robot testing and training facility to open June 21

By Scott Simmie

 

It’s nearly here.

On June 21, Canada’s first ever Drone and Advanced Robot Training and Testing Zone (DARTT) will open. 

It’s all happening at Area X.O – the Ottawa Research and Development complex operated by Invest Ottawa. It’s where companies like InDro Robotics invent, test and perfect new technological smart mobility solutions before commercialising them.

The zone will offer challenges built to demanding criteria set out by NIST – the US-based National Institute of Standards and Technology. NIST courses are frequently sought out by operators wanting to reach the highest level of skills in drone and robot deployment. First Responders and high-level Enterprise operators in the US frequently attend training sessions that follow NIST criteria.

“It’s going to be an incredible asset and the first of its kind in Canada,” says Rebecca Thompson, Senior Manager of Operations at Area X.O. “It will allow for drone and ground robot training and performance testing – and supporting the small-to-medium enterprises and the many other clients that we serve.

“Having the capability to support companies to advance their skills, certify their technologies, and get trained up on specialised operations the market is demanding is critical. So we’re excited about this.”

Below: A CGI look at the facility’s design:

HOW DID THIS COME ABOUT?

 

We didn’t know the answer to that when we first began researching this post. The answer? A discussion.

“It was actually a conversation between (InDro CEO) Philip (Reece) and myself,” explains Thompson. “Having InDro here at Area X.O as one of our tenants and partners – and given the amount of focus on drones and robots in the industry – we asked ‘How do we support these partners? What is Area X.O missing? What can we add on?'”

Reece suggested that an advanced facility for training, testing and evaluation would be of benefit. Such a place would fill a definite void – especially given the tremendous growth in both aerial and ground robots.

“When Philip brought forth the idea it was a no-brainer,” says Thompson. “So in collaboration we were able to bring this to my leadership team here at Area X.O. And we brought the opportunity to FedDev Ontario and they agreed. They felt this was a way to enhance the capabilities and assets we already had at Area X.O – and to support the companies that require somewhere to test, validate and trial new technologies.”

 

FEATURES

 

One of the interesting features of the new facility is an outdoor, netted space for secure and confined drone testing. The ability to fly within this setting will enable safe testing of new drone technologies – including failsafe systems – within a secure area. What might happen if a drone loses satellites or a 5G signal mid-flight? What if the Inertial Measurement Unit failed? What if a company wants to test a completely new design that’s never flown in the wild before?

Testing these sorts of scenarios in an open space always carries with it a greater degree of risk. And, in some cases, would require a Special Flight Operations Certificate from Transport Canada. Flying within a netted enclosure will allow for such testing without special permissions, since there’s no risk of conflict with crewed aircraft or people and property on the ground.

In addition, ground robots will face challenging terrain at the new site, including multiple test beds featuring different substances. These Uncrewed Ground Vehicles (UGVs) will be tested over sand, gravel, uneven concrete surfaces and even water and mud. There will also be an inclined ramp that can be positioned at various angles. Operators will have to navigate that challenge while also exploring the limitations of the robots. 

There will also be the familiar bucket test. Buckets placed at specific locations and angles will challenge drone pilots to precisely position UAVs and gimbals in order to reveal a letter, number or symbol affixed to the bottom of the bucket. Only by getting the drone and camera lined up in *just* the right spot will the operator be able to identify the target. These kinds of skills are particularly useful for Search and Rescue teams, law enforcement and other First Responders.

Once a pilot is able to successfully navigate the course, performance is timed

Below: A preliminary plan for the facility

DARTT Zone

DESIGN

 

So how do you design a test facility when it’s the first of its kind?

With a solid background in the field and plenty of research.

The task went to InDro’s Brian Fentiman, who worked with the RCMP for 34 years. Three years were as an RPAS specialist, building out the Small Uncrewed Aerial Systems (sUAS) program – as well as a Counter-sUAS program – for the RCMP in British Columbia. He has trained and supported First Responders, forensic investigators, Search and Rescue teams and tactical units. He has also designed several drone training courses.

“I was asked to put my input into the design of a NIST facility, which would use standard American Society for Testing and Materials (ASTM) tests, which NIST facilities do, to test both drones and ground robots,” says Fentiman.

“First Responder agencies are always looking for a way to measure up against industry standards. They’re usually cutting-edge, but they’re not always up on the technical side of things as for how to select the correct hardware, and how to train or set standards for their operators in using those items. This facility will allow people can test without having to build all this infrastructure themselves.”

 

CLIENTS

 

So: Who will benefit from such a facility?

It’s been very deliberately designed to offer both training and testing/evaluation, meaning it will likely appeal to two very different client sets. And that includes the world of R&D.

“There are going to be manufacturers that want their product tested during development,” says Fentiman. “(Plus) Police departments, fire departments, First Responders – as well as any professional agency that’s using drones.”

He adds that while some of the tests are particularly suited for First Responders and Search and Rescue units, “I believe a lot of the tests are applicable to any agency that’s using drones.”

Area X.O’s Rebecca Thompson believes the facility will also appeal to other sectors, including “academia, defence, precision agriculture, high-level Enterprise operators… We’ve considered the needs of all potential users in the end design.”

Below: Ground robots of all shapes and sizes will be able to test their mettle (and operator skills) at the new Area X.O facility

 

WHY IS TRAINING, TESTING IMPORTANT?

 

We posed that question to Kate Klassen, a commercial pilot and flight instructor – who is also one of the most recognized and respected online drone trainers in Canada. Klassen is also the architect and instructor of FLYY, which offers aspiring drone pilots everything they need to obtain their Basic or Advanced RPAS certificate – along with much more.

“As the RPAS industry matures, there’s an evolving need for specialized training in some of the niche areas that have developed,” she says.

“Applications are ever-expanding and the need for qualified operators to fill those roles is so great we don’t have time to wait for skills to develop over years of experience. We need those capable operators now! This new facility will enable operators to build skills in real, but safe, scenarios.”

Klassen, co-chair of Transport Canada’s CanaDAC Drone Advisory Committee, is also among the advocates for micro-credentials in the drone and ground robot world. Standardized, focussed courses in specialties like photogrammetry, thermal and night missions, and payload operations would give operators high-value skills within a course setting, rather than trying to learn on the job. (Plus, in a Catch-22, many are denied job opportunities because they don’t yet possess those specialized skills. We recently took a deeper dive into the case for micro-credentials here.)

Klassen, like others, eagerly anticipates the opening of the facility. We asked her why she’s excited.

“Oh man, so many reasons. For the first time we’re seeing a ground and air robot (drone) training and testing space and I think we’ll see those technologies work more closely together in the future, too,” she says.

“As an educator, I’m excited for the course offerings we’ll be able to put together. So much thought has gone into the details and facilities in this space – and I can’t wait to see how it’s received.”

 

STARTING OUT?

 

If you’re interested in obtaining your Basic or Advanced RPAS Certificate, Klassen’s FLYY is one-stop shopping. Full Disclosure: Klassen works with InDro, and InDro has a financial stake in FLYY. But also Full Disclosure: Klassen truly is a pioneer and respected expert in the world of online training. The first course she created trained more than 10,000 drone pilots in Canada. Plus, as a traditional crewed aircraft instructor, she knows the regulations inside and out.

But why pay for a course when you can find videos on YouTube?

“YouTube can be a great resource, but the challenge is knowing the accuracy and validity of the information,” says Klassen.

“You want to trust the training provider, know their credentials and that they have the experience and expertise to be the one providing the training! In addition to video modules, FLYY also provides downloadable resources, interactive lessons and the ability to download for offline viewing.”

What’s more, FLYY offers a number of specialized courses and mini-courses.

“In addition to Basic through Advanced knowledge requirements, FLYY offers a guide to developing your own SOP, how to prep for your flight review – even online flight training with animations. Each course offers digestible segments that you can do as you have time. If you leave midway, it remembers where you left off. There’s also a community forum to ask questions and chat with experts and other students.”

If you want to get your drone training off to a solid and recognized start, FLYY is offering 10 per cent off for its online courses. Use code “springisintheair” at checkout.

Below: The new training and testing facility, under construction, in early April. DARTT will officially open June 21, 2023

DARTT Area X.O

INDRO’S TAKE

 

It’s no surprise that we’re thrilled about this facility.

InDro will be using it to put our own technology (and operators) to the test – and will also be running the training, testing and evaluation at the site. Courses are currently in the final stages of being designed to maximize exploiting the new facility’s many features (and challenges).

“This training and testing site will be hugely beneficial to a wide range of clients,” says InDro CEO Philip Reece. “Many in the industry have heard about it, and we’ve already been receiving inquiries – a sign that there’s going to be real demand.

“We particularly grateful to Area X.O’s Rebecca Thompson, who immediately understood the value of this concept and helped share that vision with Invest Ottawa. The industry also owes a nod to FedDev Ontario, which also recognized this project’s value with financial backing.”

We’ll report back to you when the facility opens. If you’re interested in booking for training, testing or evaluation purposes, please contact us here.

Oh – and if you’ll be (or can be) in Ottawa June 21, a small number of free tickets for the afternoon event remain. You can register here.

Port Coquitlam drone grant leads to new Fire and Emergency Services capabilities

Port Coquitlam drone grant leads to new Fire and Emergency Services capabilities

By Scott Simmie

 

There’s no question that drones have become an essential part of the toolkit for First Responders.

Drones have proven themselves in Search and Rescue operations (including at night), for Situational Awareness in firefighting and disaster response, and as important tools in accident documentation that can allow police to more rapidly clear the scene and get traffic moving quickly again.

Now, the city of Port Coquitlam’s Fire and Emergency Services department has upped its capabilities thanks to two new drones and training – the result of a $30,000 grant from the Union of British Columbia Municipalities (UBCM). The money was earmarked as “Community Emergency Preparedness Funding.”

Below: An image from Port Coquitlam’s Fire and Emergency Services web page

Port Coquitlam Drone Grant

EYES IN THE SKY

 

Drones have proven particularly useful tools to firefighters. They not only provide the Big Picture from above, but drones with thermal sensors can see beyond the visible flames – identifying other hotspots not visible to the naked eye. A section of roof that might appear fine could, in fact, be close to combustion.

On May 6, 2019, drones played a huge role at one of the worst fires in the City of Victoria’s history. What would come to be known as the Pandora Street Fire would ravage an historical buiding and take a week to fully extinguish. On the morning it broke out, there was so much roiling brown smoke that firefighters couldn’t even see where the flames were. They immediately put an InDro drone, equipped with thermal sensors, in the air.

“If you’ve ever been to one of these big fires, the smoke is thick and completely impenetrable,” explained InDro Robotics CEO Philip Reece in this story.

“You’re pointing the hose at where you think the fire is. Now you switch to thermal and it basically cuts the smoke – the smoke disappears. Now you see the heat coming up off the fire. You can actually follow it down through the different radiometric temperature colours to where the real core of the fire is.”

The image below was taken at the Pandora Street Fire and is courtesy the City of Victoria’s Fire Department. You can see, thanks to thermal, where the hottest spots are. It’s a clear example of how important an airborne thermal sensor is:

 

Pandora Street Fire FLIR thermal drone

DRONES AND MORE

 

The drones, purchased via InDro Robotics, are two DJI Mavic 3 Enterprise Thermal units. The camera provides up to a 56x combined optical/digital zoom, and the thermal sensor has 640 x 512 resolution. With flight times of up to 45 minutes, the pair of drones can be easily rotated for continuous situational awareness. The controller allows to displaying both visual and thermal imagery side-by-side.

“This is a great example of our city using creative technology tools to better serve and protect our community, residents and keeping our firefighters safe,” said Mayor Brad West in this news release

“Providing immediate access to real-time video footage, helps our firefighters make better on-scene decisions. We are grateful to the Union of British Columbia Municipalities (UBCM) for providing us with this grant that will positively impact our community.”

TRAINING

 

The grant also provides for training of those who will operate the drones – as well as to develop planning exercise scenarios for the City’s Emergency Operations Centre. Five Fire Department pilots currently hold their Transport Canada Advanced RPAS Certificates, and additional training with InDro Robotics will take place to in order to fully exploit the capabilities of the thermal drones and interpret the data.

The news release states that drones will be able to provide real-time information via live-streaming to the City’s Emergency Operations Center during incidents:

“A review of the current EOC practices, used to obtain information, suggests that more timely and reliable information can be obtained through the use of technology, such as drones. Using a drone to survey the site of an incident can reduce the risk of injury to first responders as well as give crucial information to the incident commander for planning response activities which can be livestreamed to the EOC.”

MULTIPLE USE-CASES

It goes on to outline some of the many benefits of drone use, including:

  • “Provides fast and efficient reconnaissance of the incident from a safe distance prior to sending first responders in to perform search and rescue operations;
  • “The use of drone mounted thermal imaging cameras assist first responders in identifying heat signatures of trapped or injured civilians who may not be easily seen or heard;
  • “Support City staff in pre-disaster planning efforts, e.g. geographic surveys and inspections of bridges, dams, and diking systems; and
  • “Provides staff with updated, accurate, high definition images for the City’s data collection.”

Councillor Steve Darling, the City Council’s designate for community safety matters, is quoted outlining why these drones are an important addition:

“The drone(s) will be used to support fire ground operations, relaying important information regarding fire growth and heat. This will also increase firefighter safety, allowing the department to keep an eye on firefighters working in hazardous areas.”

Below: A DJI video outlining the features of its Mavic 3 Enterprise drones

 

INDRO’S TAKE

 

It’s been less than a decade since DJI released the original Phantom, which required a separate GoPro and was not capable of video streaming unless you really wanted to buy hobby parts and hack the camera to transmit. Drones were anomalies then, largely purchased by hobbyists.

But it wasn’t long before First Responders started seeing the potential. Some early adopters embraced the emerging technology, and it wasn’t long before word started to spread. It’s now routine, at pretty much any drone or First Responders convention, for presentations to be made showing real-world examples of how useful – critical, even – drones have become.

“The growth of drone technology has truly been exponential – and so have the use-cases,” says InDro Robotics CEO Philip Reece.

“We’ve long been involved with drone training with Port Coquitlam Fire, and applaud the Union of British Columbia Municipalities for this forward-thinking grant. We look forward to hearing about the many ways these drones benefit Port Coquitlam Fire and the City’s Emergency Operations Centre.”

InDro has, for many years, trained First Responders and supplied specialized drones for their work. If your local First Responders would like to learn more about the capabilities of InDro drones or ground robots – including training at the forthcoming Area X.O advanced drone and ground robot facility in Ottawa – feel free to contact us here

 

 

FLYY’s Kate Klassen on the importance of drone training

FLYY’s Kate Klassen on the importance of drone training

By Scott Simmie

 

Here’s a quick quiz for you: How many drones are registered with Transport Canada?

Take your best guess.

The answer? According to the latest Transport Canada RPAS Team Newsletter, the number is 86,131. That’s a lot of drones. Many of these – we’re confident the majority – are recreational/hobbyist machines. But the growing service provider sector is also a big contributor.

Quiz Number Two: How many Special Flight Operations Certificates were issued by Transport Canada in 2022? The answer here is 814, with the following breakdown:

  • Beyond Visual Line of Sight Operations: 62
  • Flying higher than 400 feet AGL: 48
  • Flying in or near Department of National Defence airspace: 56
  • Special Aviation or Advertised Events: 172
  • RPAS weighing over 25 kilograms: 41

The math-inclined might notice those numbers don’t add up to 814. The final category – with 435 SFOCs issued in 2022 – is for Foreign Operators.

“It’s pretty obvious, but there’s been an incredible growth in the use of drones across all sectors,” says Kate Klassen, a licensed traditional aircraft pilot and flight instructor. She’s also InDro’s Strategy and Implementation Specialist.

“And based on what I’ve seen – including my work with the Canada Drone Advisory Committee (CanaDAC), these numbers will continue to grow for many years to come.”

Below: A professional drone operation

 

LICENSED PILOTS

 

Along with the growth in registered drones, there’s been a commensurate growth in the number of licensed RPAS pilots in Canada. Transport Canada has issued 86,709 Basic Pilot Certificates, and 10,060 Advanced Pilot Certificates. Advanced RPAS Certificates allow a pilot to fly in controlled airspace, closer than 30 metres to bystanders, and nearer than 3 NM (5.6 km) to airports and 1 NM (1.9 km) to heliports.

And of that number? Roughly one in eight received their training from InDro’s Kate Klassen.

Klassen was a pioneer in the training world, developing an online course that was both educational and entertaining. She did that prior to joining InDro, and some 10,000 people took her online course. That’s a phenomenal number.

And she’s at it again, with a series of online courses at FLYY.

We’ll get into FLYY – and the importance of training – in a moment. But first, let us more fully introduce you to Klassen.

She’s a commercial pilot and a flight instructor for both airplanes and RPAS. She’s been involved with aviation for the past 16 years and holds a Management of Technology MBA from Simon Fraser University. Klassen serves as a Director with the Aerial Evolution Society of Canada (formerly Unmanned Systems Canada/Systèmes Télécommandé Canada) and was a Director for BC/YK with COPA (Canadian Owners and Pilots Association). She was also Co-Chair of Canada’s Drone Advisory Committee (CanaDAC), working closely with Transport Canada. She’s an expert in regulations and training.

Plus, she’s an amazing educator.

Below: A screen grab of Klassen from one of the FLYY instructional videos

Kate Klassen Drone Training

WHY BOTHER WITH A COURSE?

 

That’s a good question. Especially when there are options like YouTube, where you can find plenty of videos of people in their basements offering what they say are the knowledge requirements to obtain your Basic or Advanced RPAS Certificate.

We put that question to Kate.

YouTube can be a great resource, but the challenge is knowing the accuracy and validity of the information,” she says.

“You want to trust the training provider, know their credentials and that they have the experience and expertise to be the one providing the training. In addition to video modules, FLYY also provides downloadable resources, interactive lessons and the ability to download for offline viewing.”

 

MORE THAN THE BASICS

 

What differentiates FLYY from some of the other online offerings?

For starters, Kate has deep expertise as both a commercial and RPAS pilot, as well as being an instructor. So you can have confidence you’re getting the Transport Canada knowledge requirements that ensure you’ve getting the fundamentals you need.

But FLYY offers more than just the tools to earn your Basic or Advanced RPAS Certificate.  The website has a module (and templates) to help you create your own Standard Operating Procedures, including a comprehensive pre-flight checklist. Another popular offering is the Flight Review preparation package. That package, which includes typical questions an Advanced RPAS Certificate candidate would receive at their in-person Flight Review, is designed to help ensure you pass that final step your first time. (And, given that most in-person Flight Reviews cost $200-$300, you really do want to pass your first time around.

 FLYY also offers Flight Reviews, regardless of your location in the country. Plus, once you’re registered with the site and taking a course, you’ll have access to an internal social hub where you can ask questions, post photos, and interact with other students and graduates of the FLYY program.

“I’m always happy to answer questions from students – and we get some good ones,” says Klassen. “This is something else you won’t get if you rely on a free online course. The courses have been carefully designed to ensure student success, and that’s also something I’m personally very much invested in. In fact, I like being a phone-a-friend lifeline for operators. It keeps me on my toes and problem solving at the pace of the industry.”

 

SPECIALIZED SKILLS

 

Drones have come a long way in the past decade. Like, a *really* long way. Think about it: DJI released its first Phantom in 2013 – a machine that required a separate GoPro in order to capture images. Now you can purchase a sub-250 gram drone with amazing range, connectivity and video/still qualities for less than $1,000.

But – particularly for those planning to become service providers or seeking professional employment – the knowledge base required has become more demanding. Gone are the days when having 50 hours of recreational drone flights might open the door to a job. Increasingly, employers are looking for people with highly specialised skills. They want candidates with experience flying thermal missions, capable of creating a LiDAR 3D digital twin – and much more.

Below: An Aerometrix methane-sniffing drone. Increasingly complex drones and drone operations require highly skilled pilots

 

Aerometrix

MICRO-CREDENTIALS

 

The future of training, at least from Klassen’s perspective, will involve obtaining credentials for operations requiring specific skillsets. These would be short, focussed courses – online or in-person – that would provide pilots with the skills they’ll need to carry out more complex flights (and with more complex sensors). Upon successful completion, a pilot would receive a certification that will become recognized as the standard for that industry.

Geospatial Information Systems (GIS), photogrammetry, mapping, volumetric calculations, BVLOS flights are just a few examples where Klassen envisions Micro-Credential courses would be the most effective route to obtaining skills.

“These are definitely skills that are pre-requisites for many drone jobs and require specialized training,” says Klassen. “Upon successful completion, a pilot would receive a certification or badge that’s recognized by the industry.”

Klassen is currently planning Micro-Credential courses for FLYY.

“Micro-Credentials will one day be just as important in this field as obtaining your Advanced RPAS Certificate,” says Klassen. “And with the new facility that’s coming in Ottawa at Area X.O, we’ll have a location where training, testing and evaluation for highly complex operations can take place in a controlled environment.”

(FYI, we took a deeper dive into the case for Micro-Credentials here.)

 

ADVANCED TESTING

 

That new site, which we’ve written about here, is designed for both drones and ground robots. Drone pilots will face a demanding NIST (National Institute of Standards and Technology) course, built to the exacting specifications created by ASTM (the American Society for Testing and Materials). It will also feature a large enclosed, netted area where specialised drone training and testing can be carried out. Complex testing or failsafe evaluation – missions that might normally require a Special Flight Operations Certificate – can be safely carried out within that netted enclosure without the need for special permissions.

The facility, which will open in June, has been funded by Invest Ottawa as a strategic investment in Area X.O. The facility will be operated by InDro Robotics. It is the first of its kind in Canada.

For the first time we’re seeing a ground and air robot (drone) training and testing space and I think we’ll see those technologies work more closely together in the future, too,” says Klassen. “As an educator, I’m excited for the course offerings we’ll be able to put together. So much thought has gone into the details and facilities in this space and I can’t wait to see how it’s received.”

Below: A look at the new facility during construction in late May.

 

INDRO’S TAKE

 

InDro Robotics was one of the first companies in Canada to offer specialized drone training – working with law enforcement and First Responders onsite and at Salt Spring Island. InDro takes training very seriously, which is why we partnered with Kate Klassen to create FLYY.

“We share Kate’s belief that demand for complex drone training and testing will only increase. We also agree that Micro-Credential courses and badges will be an important offering for those wishing to take their skills to the next level,” says InDro Robotics CEO Philip Reece.

“Between Kate’s excellent FLYY program and the forthcoming Area X.O facility, we’ll be creating and delivering cutting-edge training customized to meet growing industry demands.”

Want to get started with training now? Head on over to FLYY, then use the code “springisintheair” at checkout for 10 per cent off.

InDro attends Robotics Summit & Expo in Boston

InDro attends Robotics Summit & Expo in Boston

By Scott Simmie

 

There’s nothing like a little trip to Boston at this time of year. Especially when the annual Robotics Summit and Expo is on.

InDro dispatched Account Executive Luke Corbeth and Head of Strategic Innovations Stacey Connors to the show, along with a number of devices either manufactured or distributed by InDro Robotics.

And it was busy. So busy, that it produced a quote we never anticipated.

“I only had time for one pee break all day and didn’t stop talking,” laughs Corbeth.

Between demonstrating a dog-like robot and other devices, speaking with attendees and potential clients, Corbeth says the tempo was absolutely surreal – with a steady stream of people at the InDro booth wanting to learn more about the company and its solutions.

“Honestly our booth was too busy,” adds Connors. “We needed two of us there, manning it nonstop.”

But that’s a good problem to have.

There was a large number of startups in attendance, as well as engineering students, professors, and others from the world of robotics, robotic medicine/surgery and academia. In conversations, Corbeth says many were keen to learn of InDro’s expertise as an integrator.

“A lot of people told us they were having difficulty building their own hardware. They really tinker with hardware and struggle with integration. For someone trying to build an autonomous inspection solution, for example, it can be challenging to focus on what you actually want to do achieve if you’re spending so much time on the hardware.”

Below: Team InDro during a microsecond when the booth wasn’t swamped:

Robotics Summit

PLENTY OF GEAR

 

InDro took a number of products the company has developed or distributes to the show. The Unitree GO1 EDU, seen in the photo above, was a big hit. But there was plenty of interest in InDro products including our new indoor drone – which has capabilities not available with standard commercial drones.

“It’s a ROS-based drone,” explains Corbeth. “It has compute onboard, a depth camera, a 4K camera, and 5G connectivity for remote teleoperations. With a standard DJI drone you don’t have the same ability to develop autonomous and custom applications. But ours can be programmed in ROS (Robot Operating System), which enables different sorts of projects that off-the-shelf drones just can’t do.”

There were plenty of engineering students – many specialising in robotics and mechatronics – at the Expo. It’s a sign, if any were needed, indicative of the massive growth in the industry.

“The students really see that,” says Corbeth. “So they put their efforts into learning how to design and build and improve these types of robots and want to be part of that going forward.”

 

MASSROBOTICS

 

Massachusetts has a thriving robotics community, including more than 400 companies that build or utilise robotic solutions. And there was a big presence at the show from MassRobotics, a non-profit innovation hub, accelerator and incubator for robotics and connected devices startups. It offers support and expertise as entrepreneurs move from envisioning a solution through to eventual production and commercialisation. The organisation also frequently teams with industry partners to issue robotics challenges, where university teams try to fulfil specific challenges in order to win cash prizes.

“We help bridge the gap and connect our startups to potential customers and investors, offering facilities and platforms to showcase their technology,” says its website.  “MassRobotics’ mission is to help create and scale the next generation of successful robotics technology and connected devices companies by providing innovative entrepreneurs and startups with the workspace and resources they need to develop, prototype, test and commercialize their products and solutions.”

Because of that mission, there was real interest in InDro’s capabilities, says Corbeth:

“They showcased a number of student-led projects, so it was nice to see what the academic world is building. They also seemed intrigued at the idea of jump-starting their projects with InDro’s integration abilities.”

InDro also told MassRobotics staff about the forthcoming drone and robot advanced training, testing and evaluation site coming soon to Area X.O.

“They lit up when I talked about the testing site at Area X.O,” says Connors, who is hoping to arrange potential collaboration between MassRobotics, Area X.O and Invest Ottawa. “It’s all about opening doors.”

Below: An image from the MassRobotics website, showing some of the 400 companies manufacturing or utilizing robotics in Massachusetts.

 

MassRobotics Boston robot companies

CLIENT VISITS

 

For Luke Corbeth, who drove down with a car absolutely jammed with robots and a drone, the Robotics Summit & Expo was just part of a very busy week. He also visited clients at the University of Massachusetts, as well as Boston University’s College of Engineering – which has purchased a fleet of Limo R&D robots. (The department is apparently doing research involving using the robots in collaborative swarms.)

It was an opportunity he welcomed.

“In the post-Covid era, a lot of interactions are online so it’s nice to actually meet the clients face-to-face, hear about their problems and successes and use that feedback to better service them and improve our products.”

And a personal highlight for Luke? A booth visit from Aaron Prather, Director of the Robotics & Autonomous Systems Program at ASTM International. Prather is followed by nearly 40,000 people on LinkedIn, where he posts prolifically on developments in the field of robotics.

“I feel like I met the Michael Jackson of robotics,” says Corbeth.

Robotics Summit Luke Corbeth Aaron Prather

INDRO’S TAKE

 

We were pleased to make some connections – and likely some sales – at the Robotics Summit & Expo. We were also pleased to see the immense interest in what InDro does (something we covered at length in a post here).

“While conferences often bring sales, sometimes exposure and making new connections are just as valuable – or more,” says InDro Robotics CEO Philip Reece.

“We’ve developed many partnerships that began as simple conversations at events like these, and we look forward to building more.”

We generally give advance notice when we’re attending conferences via LinkedIn and Twitter. Give us a follow and stay up to date on InDro developments.

FAA releases airspace blueprint for Urban Air Mobility

FAA releases airspace blueprint for Urban Air Mobility

By Scott Simmie

 

If you’re involved in the world of drones or traditional aviation, odds are you’ve heard of air taxis, cargo drones and the coming world of Advanced Air Mobility, or AAM.

But what does that mean? And how will it differ from our current skies?

To get started, it’s worth looking at a definition of AAM. We like this one from BAE Systems:

“Advanced Air Mobility is an air transport system concept that integrates new, transformational aircraft designs and flight technologies into existing and modified airspace operations. The objective of AAM is to move people and cargo between places more effectively, especially in currently underserved local, regional, urban, and rural environments.”

And these transformational aircraft designs? Well, they include air taxis and heavy-lift drones capable of efficiently moving people, goods and critical supplies from major urban centres to nearby regions. Many of these destinations – certainly initially – are likely to be close to major urban centres but not have traditional airports. Often, those underserved areas have never had enough traditional air traffic demand to support the required infrastructure. Plus, it doesn’t really make sense to fly a plane over a very short distance.

The coming generation of new aircraft, for the most part, will not require runways and will be more environmentally friendly than ground transport. Most of the aircraft under development are electric and capable of vertical takeoff and landing – often transitioning to more efficient fixed-wing flight for the journey. And that means minimal infrastructure will be required. Think helicopter landing pads.

Sustainable electric or hybrid-powered flight, along with the promise of autonomous missions that can efficiently ferry goods through the sky while reducing road congestion, are among the key benefits of AAM.

Below: Volkswagen is just one of many companies developing new types of aircraft for the coming world of Advanced Air Mobility. Some firms are actively testing.

Urban Air Mobility

AAM and UAM

 

The drone and aviation world loves its acronyms. And one that goes hand-in-hand with AAM is UAM – Urban Air Mobility.

UAM refers to the use of Advanced Air Mobility technologies in a strictly urban setting. Picture a major city where you can hail an air taxi to a landing pad, also known as a vertiport, with a phone app. Or where goods are routinely shuttled by drone or other new aircraft across urban skies. That’s what Urban Air Mobility refers to. Think of it as a subset of AAM.

But while UAM offers unique efficiencies and a reduction in ground traffic, it also comes with greater risk than flying goods to regional areas. That’s because these aircraft will be flying over property and people for the entire duration of their missions.

They’ll also be flying at lower altitudes than traditional crewed aircraft, and – eventually – in greater numbers. So regulators are interested in helping to shape the coming UAM (and AAM) eras to ensure a safe system that seamlessly meshes these new aircraft with existing airspace.

 

FAA

 

In early May, the Federal Aviation Administration – the US regulator – released an updated blueprint of how it envisions AAM will unfold. The Concept of Operation (ConOps) document outlines what procedural changes might help ensure a slow, safe and smooth transition into the coming era.

Transportation is constantly evolving,” it states. “Each step forward yields new opportunities that fundamentally change the relationship that humankind has with distance and travel. While it may not significantly reduce surface traffic volume, UAM will provide an alternative mode of transportation that should reduce traffic congestion during peak times.”

And the driving force behind all of this? Technology.

“Major aircraft innovations, mainly with the advancement of Distributed Electric Propulsion (DEP) and development of Electric VTOLs (eVTOLs), may allow for these operations to be utilized more frequently and in more locations than are currently performed by conventional aircraft,” says the regulator.

We’ll dive a little deeper in a moment. But the FAA says – in addition to certifying aircraft and pilots – that the blueprint is a “key step” in efforts to move safely toward this next phase of aviation. The blueprint should be of interest to everyone in the industry – particularly those who have plans for moving people and cargo by this next generation of aircraft. The FAA describes the blueprint as a “frame of reference” for itself, NASA, and the industry.

Below: Might Vancouver’s skies one day include aircraft like the one pictured below? Odds are, yes.

 

THE BLUEPRINT

 

So how will the US get from here…to there?

What guidelines or steps are needed to ensure a safe transition from now to then? The key, says the FAA, is to adopt a “crawl-walk-run approach.” In other words, start slowly – very slowly – and integrate these new aircraft in a highly methodical way while building on incremental successes.

“The envisioned evolution for UAM operations includes includes an initial, low-tempo set of operations that leverage the current regulatory frameworks and rules (e.g., Visual Flight Rules [VFR], Instrument Flight Rules [IFR]) as a platform for increasing operational tempo, greater aircraft performance, and higher levels of autonomy,” says the FAA.

That “low-tempo” means you won’t be hailing an autonomous air taxi anytime soon. In fact, when it comes to moving people and goods, fully autonomous aircraft are in the last stage of the FAA’s Concept of Operations.

Here’s a look at the three main phases the FAA has identified, taken directly from the blueprint:

  • Initial UAM operations are conducted using new aircraft that have been certified to fly within the current regulatory and operational environment.
  • A higher frequency (i.e., tempo) of UAM operations in the future is supported through regulatory evolution and UAM Corridors that leverage collaborative technologies and techniques.
  • New operational rules and infrastructure facilitate highly automated cooperative flow management in defined Cooperative Areas (CAs), enabling remotely piloted and autonomous aircraft to safely operate at increased operational tempos.

Below: An EHang EH216 carries out a passenger-carrying, autonomous flight in Oita Prefecture, Japan. The company has already logged 30,000 safe flights and is in the certification process with the Civial Aviation Administration of China. Image via EHang. 

EHang 216

AIR TAXIS

 

The FAA document focuses on air taxis – eVTOLs capable of carrying either people or cargo. And, in line with its “crawl-walk-run” approach, envisions a phased integration of these vehicles into US airspace.

All aircraft would be need to be certified. And initially, the Pilot-in-Command would need to be onboard and manually flying the aircraft using Visual Flight Rules (VFR) and Instrument Flight Rules (IFR). Pilots would communicate with Air Traffic Services, which would be responsible for ensuring adequate separation with traditional aircraft.

The ConOps document also envisions corridors – three-dimensional freeways in the sky that would be set aside for air taxi traffic. These corridors would at first be one-way only, though that would likely change in future.

In the early phases, the FAA believes existing helipads or other current infrastructure would be adequate. But it encourages planners and municipalities to use the best available data and forecasts when determining where to build vertiports.

“State and local governments are being encouraged to actively plan for UAM infrastructure to ensure transportation equity, market choice, and accommodation of demand for their communities,” says the document.

“The vertiports and vertistops should be sited to ensure proper room for growth based on FAA evaluated forecasts and be properly linked to surface transportation (when possible), especially if the facility primarily supports cargo operations. Local governments should also have zoning protections in place to protect airspace in and around vertiports and vertistops.”

As demand – and technology – advance, the FAA foresees traffic management becoming more automated. Data-sharing and detect-and-avoid technology would likely enable the eventual rollout of fully autonomous flights. In that scenario, these machines would operate under what the FAA calls “Automated Flight Rules” – or AFRs.

It’s all part of an evolution that would see the gradual implementation of automation, with people playing less active roles over time. Initially, the FAA says, there would always be a Human-Within-the-Loop (HWTL) – meaning a pilot. That would evolve to a person having supervisory control of automation, known as a Human-on-the-Loop (HOTL).

In a fully mature system, people would simply be notified by automation if action is required. This is referred to as Human-Over-The-Loop (HOVTL), defined by the FAA as follows:

 

  • Human is informed, or engaged, by the automation (i.e., systems) to take action
  • Human passively monitors the systems and is informed by automation if, and what, action is required
  • Human is engaged by the automation either for exceptions that are not reconcilable or as part of rule set escalation

“UAM operations may evolve from a PIC onboard the UAM aircraft to RPICs/remote operators via the advent of additional aircraft automation technologies,” states the blueprint.

The following FAA graphic indicates the predicted evolution of the UAM operational environment:

FAA UAM evolution

SLOW AND STEADY

 

There’s much more to the FAA document, and we encourage those interested to explore it here. But the key point is a slow and measured integration of these new transformational aircraft with an emphasis on safety and human oversight within existing regulations. As technology and data-sharing improve, this will evolve to a more automated/autonomous system with humans involved only if they are flagged to intervene. New regulations will likely evolve as the technology continues to develop.

The FAA released a brief video in conjunction with its blueprint, which hits some of the highlights discussed in this post:

INDRO’S TAKE

 

Like many, we see the great potential in the coming Advanced Air Mobility/Urban Air Mobility era. Certified aircraft safely moving people and goods will be faster, more efficient and more sustainable than current ground travel. It could also be a boon to people living in communities currently not served by traditional aircraft.

“We see particular utility for remote and cut-off communities in need of critical goods,” says InDro CEO Philip Reece.

“We always use the crawl-walk-run model when deploying our own new technologies, and believe this incremental approach is the best way to ensure safety and public acceptance. We anticipate Canadian regulators, working with industry and the Canadian Advanced Air Mobility Consortium, will be taking a similar approach.”

The new FAA blueprint, though it’s a ConOps document and not carved in stone, does leave us feeling that plans are starting to take shape. We look forward to the slow, steady and successful integration of UAM/AAM in the US, Canada and elsewhere.

If you’d like to do some further reading on AAM – and what’s happening on the Canadian scene – you’ll find that here.

Public perception of drones mixed depending on use-cases

Public perception of drones mixed depending on use-cases

By Scott Simmie

 

What does the public think about drones?

That’s a very good question. And the answer has implications for the industry at large.

Is the public ready to embrace drones becoming a more ubiquitous part of everyday life? Are people ready for drones to be flying overhead in urban settings – whether they’re gathering data, delivering critical supplies, or simply dropping off a bagel and latte for the sake of convenience?

As the industry moves ahead to more routine Beyond Visual Line of Sight Flights utilising pre-programmed and autonomous technologies, the answer – or answers – could have a significant impact on the speed of adoption.

Do people want drones buzzing in their neighbourhoods? WING certainly had some pushback when it began trials of convenience deliveries in Australia. And what about concerns over privacy?

There are plenty of questions. And some intriguing answers.

Below: InDro delivers prescriptions to remote Gulf Island communities in a trial using drones for critical deliveries of medications

Public Perception of Drones

CANADIAN RESEARCH

 

Before we dive into the nuts and bolts, some context: We’ll be referring to two scientific papers just published by Canadian-led research teams based out or Carleton University in Ottawa. One of these papers reviews existing research and draws conclusions, while the other involves original data on public perceptions gathered in Canada. Though we’ll dip into both, we’ll focus primarily on the paper called “Public perception of remotely piloted aircraft systems in Canada” – which appears in the May 2023 issue of Technology In society.

That study was authored by Dr. Nick Tepylo, Leilah Debelle, and Jeremy Laliberté. Dr. Tepylo is both a pilot and an aircraft systems engineer who holds a PhD; Professor Jeremy Laliberté leads a 22-person Carleton research group that focusses on the advanced use of drones and Advanced Air Mobility (AAM). Leilah Debelle is a research assistant (Co-op) in the Department of Psychology.

Together, this group carried out the first original research on this topic in Canada since 2014. Back then, there was considerable opposition to drones. As the paper’s abstract points out:

“The last major survey performed in Canada was done in 2014 and found the public was rather opposed to the use of drones and preferred traditionally piloted aircraft in all 38 applications polled. Much has changed over the past eight years as the findings presented herein show the public is supportive of the technology in most applications… Applications of drones that were perceived to further the public interest such as search and rescue, firefighting, and climate research were also viewed more positively. Most drone user groups were viewed favorably except for journalists and corporations.”

Below: A Draganfly drone designed for medical deliveries

 

Canada Drones

WHAT DO CANADIANS THINK?

 

Well, in large part, it depends on what use-cases are involved.

The respondents in the survey (there were 1,022), showed a clear preference for use-cases such as Search and Rescue, disaster response and scientific research. At the bottom of the list? Drone delivery.

We spoke with Jeremy Laliberté about the results; he agreed that people surveyed were more inclined to support what could be termed “positive” use-case scenarios.

“In general, the public is accepting of these technologies, but it varies strongly,” says Laliberté.

“If you look at the Canadian context, who is using the RPAS influences heavily the level of acceptance. So for example, public safety applications, Search and Rescue, things that are for the public good…have very high levels of acceptance. And we found in our literature review, that’s also the case in other countries.”

Intuitively, that makes sense. But what are the applications where the public is less likely to embrace drone use?

“Where the acceptance falls off, interestingly enough, is around delivery – delivery of just regular goods and services…packages, parcels, things like that. As well as journalism – using drones to monitor the public in any way or for news gathering – those get lower levels of acceptance,” he says.

You can see the varying levels of acceptance, pending use-cases, in the graphic below from the research paper. About 87 per cent of respondents strongly or somewhat support use-cases like Search and Rescue, firefighting and disaster response. Only 1.6 per cent of respondents oppose the use of drones in these scenarios.

“At the other end of the spectrum, package delivery had the lowest level of support with 44.9% in favor, 25.7% opposed, and 29.4% neither supporting nor opposing this mission type,” states the paper.

“Newsgathering and surveillance missions received just shy of 60 per cent support, while all other missions received at least 75% support. Additionally, only three missions (newsgathering, surveillance, and package delivery) received more than 10% opposition.”

 

Canada Drones

CONCERNS OVER MISUSE

 

The research also asked about the potential misuse or drones. Three different scenarios were presented to respondents: The use of drones for smuggling, flights over public spaces and flights over residential properties.

“Participants were most concerned about the potential misuse of RPAS by smugglers with 34.1% expressing a high level of concern and an additional 44.2% indicating a moderate level of concern,” states the report.

Reported cases of smuggling usually involve criminals dropping contraband into prison facilities. So while there is concern about such activities, these use-cases are generally rare and don’t directly impact members of the public or legitimate drone service providers. Arguably more relevant to the industry is concerns about flights over public spaces and homes, with the latter something that could become routine if and when urban drone deliveries take place.

Canada Drones

PRIVACY

 

Respondents were given the opportunity to get a little more specific about their concerns, with the option of entering their thoughts in a text box. Of the 1022 people surveyed, 611 (nearly 60 per cent) took the opportunity to offer additional information. And it’s clear: People are concerned about privacy.

“Responses relating to privacy concerns were the most common with 58.3% of responses highlighting some sort of privacy concern. Privacy was the most common word used, followed by variations of the words spy and surveillance,” states the report.

“Other words such as filming, video, pictures, etc. were entered and included under the privacy category. Government users were the most mentioned user of concern, followed by law enforcement, and hobbyists. Other issues raised related to the risk of collisions or drones falling out of the sky, hacking and cybersecurity, misuse by criminals, and the potential for weaponizing drones to target civilians.”

And there’s a lesson here, says Laliberté, for service providers. The public wants to know what these devices are doing when in public spaces or over residences, and what data is being collected.

“Things like package delivery…those are the ones (use-cases) where there will definitely need to be clear and transparent sharing of information: What are you doing? Who’s operating the aircraft? What kind of data is being collected? How’s the data being protected?” he says.

“I think the operators will have to be proactive about that sort of thing and really sort of get out there and explain their operations and be clear and transparent, and explain what they’re doing, how they’re doing it and how they’ve ensured that it’s safe.”

Laliberté suggests it could also be useful for drone operators in such use-cases to clearly mark their drones with company names and/or colors so that the devices can be identified from the ground. That way they’re not seen as an anonymous device with an unknown operator – which could contribute to concern/suspicion.

Below: First Responders operate a drone while trying to locate a missing person

Canada Drones

NOT JUST CANADA

 

It’s not just Canadians who have concerns about privacy. The paper cited three other research papers – two from the United States and one from Switzerland – that showed similar concerns.

“Similar to other democratic countries, the Canadians surveyed in this study expressed privacy concerns regarding the use of RPAS. Most of these concerns were related to surveillance by individuals, news organizations, or the government,” states the paper.

“The major concern with government users and law enforcement is surveillance, while with corporate entities, data collection for marketing is the largest concern, whereas with hobbyists, people are concerned about potential spying and recording of one’s actions. Future policy should be written to address each of these unique scenarios to improve the social acceptance of drones.”

The research also found there are differences in public acceptance based on perceived use of drones. If the drones can be obviously seen as a tool, their deployment is likely to be seen more favorably when compared with other forms of sensor-based data acquisition.

“The Dutch team of Bart Engberts and Edo Gillissen make the designation between the use of drones for sensory applications and their use as a tool,” explains Dr. Tepylo.

“Applications falling under the tool category such as using drones for firefighting or disaster monitoring typically have higher levels of support; however, the public is more weary when drones are used for sensory applications. These could include crime scene surveillance and even using drones to issue speeding tickets. People are used to a certain level of privacy and when drones are added to the mix, even without knowing how the drones are being used, they feel that their privacy is being taken from them.”

 

THE GOOD NEWS

 

It’s worth noting that the Carleton research indicates a shift in public opinion since the last major Canadian survey on the topic in 2014. People are more supportive of drones across all use-cases, with very strong support for First Responder use, disaster response and scientific research.

Also worth noting is that younger people and those with a background in RPAS tend to be more supportive than older Canadians and those who are less familiar with the technology. It also appears that words matter: The study used the word “drone” in half of its surveys and “Unmanned Aerial Vehicle” in the other half. Those surveyed were significantly more likely to support use-cases when the word “drone” was used rather than “Unmanned Aerial Vehicle.”

In fact, users were asked to identify their feelings on spotting a “drone” vs. an “Unmanned Aerial Vehicle” in the sky. People were more excited at the prospect of seeing something identified as a drone than an Unmanned Aerial Vehicle. Women expressed less enthusiasm than men regardless of the word used, and far greater concern than men at seeing an Unmanned Aerial Vehicle.

And why is that? The research revealed that more people are familiar with the term “drone” and could easily identify a quadcopter and associate it with the word. There was more confusion around “Unmanned Aerial Vehicle” – with respondents more likely to associate that term with a military device such as a Global Hawk.

Public Perception of Drones

AND THAT OTHER STUDY?

 

At the outset, we mentioned that there was a second paper which reviewed existing literature around public perceptions. Entitled “Public perception of advanced aviation technologies: A review and roadmap to acceptance,” the paper was published in April of 2023. In addition to Dr. Nick Tepylo and Professor Jeremy Laliberté (who authored the Canadian study), they were joined by Dr. Anna Straubinger from the Leibniz Centre for European Economic Research. In addition to drones, the review paper covers public perceptions of Urban Air Mobility and such technologies as air taxis (where Anna Straubinger has extensive expertise).

Because this is a long-ish post already, we’ll briefly hit some of the takeaways. The following highlights are taken directly from the review paper:

  • Interest in public perception of drones has been increasing since 2015
  • Awareness of drones is between 93 and 97% in North American and European countries
  • Support for drones increases with the level of awareness among the population
  • Support for air taxis has steadily increased and sits around 40–60%
  • Improving public perception is the key to widespread adoption of the technology

LOCATION, LOCATION, LOCATION

 

Interestingly, the data shows that public perception can be influenced by where you live. In Switzerland, for example, support for package deliveries was 18 per cent. In Singapore, meanwhile, support was in the low 80s. High rates of public acceptance, says Professor Laliberté, will likely lead to earlier adoption in those countries – including technology such as air taxis.

“Especially with Urban Air Mobility (UAM) some of the initial trials were being done and proposed in countries where definitely the level of acceptance is higher,” he says. And as for Singapore and package deliveries?

“Singapore is relatively small, high density, and fairly urban. So it actually makes sense to try these (use-cases) out in some of these areas.”

Even a single drone service provider, doing work that’s perceived as good, can influence overall acceptance rates – which ultimately impact speed of adoption.

“Despite the lack of research data, Africa is a very promising location for the adoption of drone technology due to the work of Zipline,” says Dr. Tepylo.

“The company operates two medical supply distribution centres in Rwanda which can provide coverage for most of the country. When they see a drone in the sky, many Rwandans think of the potential life-saving mission that vehicle is completing so reactions are very positive. If the Zipline model is able to be replicated in other parts of Africa and rural areas around the world, it has the potential to accelerate the adoption of drones globally.”

Below: Graphic showing public acceptance of various use-cases by country. Locations with higher rates of public acceptance could well adopt these technologies at scale sooner than those with lower acceptance rates

Canada Drones

INDRO’S TAKE

 

We’re pleased to see these new papers – and particularly pleased to see researchers from Carleton University taking a lead in this field. These findings are tremendously useful to operators – and offer some useful takeaways when it comes to being transparent about operations due to the level of concerns around privacy. It’s also clear that public perceptions can play a role in influencing regulators when it comes to the pace of change.

At InDro, we’ve long emphasised what we would term ‘positive’ use-case scenarios. These include specialized products and training for First Responders, trials of prescription medication and COVID test supplies via drone – even the delivery of Automated External Defibrillators. It’s nice to see that these use-cases strongly align with high levels of public acceptance/support.

“It may well be inevitable that packages are delivered in urban settings down the road,” says InDro Robotics CEO Philip Reece. “But that’s still several years away. We see greater importance in delivering critical supplies like medications to cut-off and isolated communities and in developing specialised drones for First Responders and scientific data acquisition. We also believe these are the kinds of use-cases that – at least for the moment – are more likely to be viewed as both useful and safer when it comes to Transport Canada and BVLOS permissions.”

We recommend taking a deeper dive into this excellent research. You’ll find the paper on Canadian perceptions here, and the review paper on broader global data here.