New research on urban wind turbulence released; InDro assists with research

New research on urban wind turbulence released; InDro assists with research

By Scott Simmie

 

Flying a drone in congested urban centres is tricky.

Not only does the operator have to be aware of buildings, low-flying helicopters and people and property on the ground, but on many days there’s an unseen force at work that can cause havoc for safe RPAS flight: Wind. Specifically, the turbulence, wind tunnels and even wind shear that can be created when wind passes between and over buildings.

Urban environments create a variety of exacerbated micro-level wind effects including shear, turbulence and eddies around buildings. These effects can locally increase reported wind speeds by up to 50 per cent,” says Dr. Eric Saczuk, InDro’s Flight Operations Lead and head of RPAS Operations at the BC Institute of Technology.

Routine drone flights in dense urban centres are clearly part of the future. That’s why a long-term study into how wind behaves in such settings has been underway, with funding from the Transport Canada RPAS Task Force (now absorbed into a broader Strategy and Emerging Technologies (SET) Branch and the National Research Council (NRC) Integrated Aerial Mobility Program. Now, a scientific research paper has been published on the preliminary findings – with more research to come.

And the InDro connection? InDro Chief Pilot Dr. Saczuk has been overseeing these flights – with more to come on the immediate horizon. On previous missions, the drone was equipped with an AVSS parachute and a wishbone-like device that carried two precision sonic anemometers positioned to capture windspeed data from different angles. That georeferenced data determines not only the speed and turbulence of the wind, but also the precise direction (and changes in direction, including wind shear) as the drone passes over what could be called an urban wind canyon.

Below: A DJI M300 drone, equipped with additional sensors, during 2023 research. Anemometers are mounted on the end of that wishbone-like brace, with each positioned to capture wind data from different directions

NRC Wind Tunnel Eric

THE RESEARCH – AND THE PAPER

 

The first phase of this ongoing project involved two very distinct procedures. One involved the drone flights, which included not only navigating wind-tunnel corridors in urban Montreal, but also hovering for periods at specific spots over and adjacent to buildings. Separate anemometers were affixed to the buildings themselves and the data was compared.

The second part took place in the NRC’s wind tunnel. There, a 1:300 scale model of the urban environment the drone flew in was assembled and placed in the tunnel. Measurements were made at various controlled windspeeds. The data from each was then compared for consistency.

The ultimate goal, for this phase of the research, is to be determine whether accurate predictive analytic models could be created that could be used when planning RPAS flights. The research might uncover, for instance, that general wind speeds within the flight parameters of a given RPAS might exceed those limits when passing around and over buildings, resulting in turbulence that would be unsafe for a mission to proceed. Such models will be immensely useful as urban RPAS flights become more routine.

But the first phase was simply to see if the data captured by the drone was in sync with the data produced in the wind tunnel testing.

“The goal of the overall study was to acquire urban-airflow data in a real environment in order to validate equivalent airflow characteristics from model-scale testing,” states the paper.

“The field test was designed to measure urban airflow characteristics using anemometers mounted on a small RPAS. The RPAS was flown along various flight paths in downtown Montréal in 2023. Following the field test, airflow measurements were taken at the equivalent spatial locations in a wind tunnel using a 1:300-scale model of the same test site. Data-processing routines for the RPAS airflow measurements included accounting for the body-motion of the vehicle and applying custom calibration equations for the RPAS-mounted sonic anemometers.”

 

THE RESULTS

 

The data obtained by the drone compared favourably with the scale-model tests carried out in the wind tunnel. In other words, the data indicates it may be possible to produce reliable, predictive models of various urban centres by testing scale models within the wind tunnel itself. Eventually, this research could potentially indicate specific locations in cities where turbulence is of particular concern for RPAS flights.

As the report states: “The distribution of mean flow speed and turbulence intensity from the field test compared well with the wind-tunnel results, including the shape of the distribution and location of the maxima. Additionally, the variation in flow characteristics along a flight path, such as mean flow speed and turbulence intensity, compared favourably with wind-tunnel results acquired at the same relative locations. This work demonstrates the suitability of model-scale testing for studying urban flow fields.”

Below: Carrying out research flights in Montreal in the summer of 2023, followed by an in-flight screen capture

NRC Urban Wind Tunnel Eric
NRC Urban Wind Tunnel Eric

INDRO’S TAKE

 

This is complex research, and these are complex missions to fly. We are pleased to have other partners on board in this research, including McGill University, Place Ville Marie, Îlot Balmoral, Maison du Développement Durable, Hôpital général de Montréal, and the Centre Hospitalier de l’Université de Montréal.

“InDro is pleased to be part of this critical research, which will help ensure safe flights in turbulent urban environments – including models that may one day predict when and where it’s unsafe to carry out missions,” says InDro Founder and CEO Philip Reece. “Of course, there are other challenges flying in cities – including the potential impact of a constellation of RF signals that could interfere with C2 links. We look forward to the next phase of this project.”

This research is ongoing and we have more flights planned in Montreal later in September.

It’s also worth noting we have barely scratched the surface of this exhaustive research paper. For those interested in a more in-depth explanation – along with plenty of data visualisations – you’ll find it here. You can also check out our 2023 flight in this post.

New research on urban wind turbulence released; InDro assists with research

InDro Robotics flies in urban wind tunnels for National Research Council project

By Scott Simmie

 

Flying a drone in dense urban settings comes with its own set of challenges.

In addition to following regulations laid out in the Canadian Aviation Regulations (CARs) Part IX, operators have to contend with other factors. Helicopters, for example, routinely share urban airspace. And, in addition to surrounding buildings, streets are generally more densely packed with people and vehicles than other locations.

But there’s another factor that can really cause problems: Wind.

Airflow in urban centres is very different from rural settings. The close proximity of multiple buildings can amplify wind speed and create tricky – and invisible – areas of turbulence. These can cause havoc for operators, and potentially for people and property on the ground.

That’s why the National Research Council, in conjunction with Transport Canada and other partners, is conducting research on urban airflow.

Below: The view from the InDro dashboard, showing a wishbone-shaped appendage carrying two anemometers

NRC Urban Wind Tunnel Eric

WHY THE RESEARCH?

 

The National Research Council is helping to prepare for the future of Urban Air Mobility. That’s the coming world where intra-urban drone flights are routine – and where airspace is seamlessly shared with traditional crewed aircraft. As the NRC states on this page:

“The vertical take-off and landing capability of UAS promises to transform mobility by alleviating congestion in our cities.”

As part of its seven-year Integrated Aerial Mobility program (launched in 2019), the NRC has already been working on developing related technologies, including:

  • “optical sensor-based detect-and-avoid technologies to assist path planning of autonomous vehicles
  • “drone docking technologies to support contact-based aerial robotics tasks
  • “manufacturing of high-density and safe ceramic lithium batteries to enable low-emission hybrid-electric propulsion”

The NRC is also interested in wind. Very interested.

 

DRONE FLIGHTS IN URBAN CENTRES

 

Drone delivery – particularly for medical supplies and other critical goods – will be part of this world before long (home deliveries will likely come eventually, but not for some time). In the not-so-distant future, it’s likely that specific air corridors will be set aside for RPAS traffic. It’s also likely, eventually, that an automated system will oversee both drone and crewed aircraft flights to ensure safety.

Part of the path to that future involves looking at the unique characteristics of urban wind patterns – along with the potential challenges they pose to drone flights. Are there certain locations where increased wind speed and turbulence pose a greater risk to safe RPAS operations? What wind speeds might be deemed unsafe? Can data gathered help lead to guidelines, or even additional regulations, for operations in cities? If the speed of wind at ground level is X, might we be able to predict peak turbulence wind speeds? Might drone manufacturers have to revise their own guidelines/parameters to take these conditions into account?

Those are the questions that interest the National Research Council, in conjunction with Transport Canada and other partners. And InDro Robotics is helping to find the answers.

Below: A DJI M300 drone, modified by InDro and specially equipped with anemometers to detect windspeed while avoiding prop wash

NRC Urban Wind Tunnel Eric

RESEARCH

 

Previous studies have shown that turbulence caused by buildings can indeed impact the stability of RPAS flights. Now, the NRC is keen on digging deeper and gathering more data.

The research is being carried out by NRC’s Aerospace Research Centre, in conjunction with a number of partners – including McGill University, Montreal General Hospital, CHUM Centre Hospital, InDro Robotics and others. The flights are being carried out by InDro’s Flight Operations Lead, Dr. Eric Saczuk (who is also head of RPAS Operations at the BC Institute of Technology).

Urban environments create a variety of exacerbated micro-level wind effects including shear, turbulence and eddies around buildings. These effects can locally increase reported wind speeds by up to 50 per cent,” says Dr. Saczuk.

InDro has been involved with this research for three years – with earlier flights carried out in the NRC’s wind tunnel. Now, the testing has become more real-world. InDro flies a specially equipped DJI M300. The wishbone-shaped appendage in the photo above carries two tiny anemometers placed specifically to capture windspeed and variations without being affected by the thrust generated by the rotors. The drone is also equipped with an AVSS parachute, since these flights take place over people.

 

THE MISSIONS

 

Some months prior to the flights, the NRC installed fixed anemometers on the roofs of the hospitals mentioned above. This allowed researchers to obtain a baseline of typical wind speeds in these areas. Then came the flights.

Part of our mission is to fly the drone over three different rooftops and lower the drone to hover at 60m and 10m above the anemometer station,” says Dr. Saczuk.

“This allows NRC to compare the wind data recorded by the static anemometers with data captured by the mobile anemometers on the drone. Our launch sites are from the CHUM Centre Hospital and the Montreal General Hospital, which are about three kilometres apart with a pilot at each location. Additionally, we’ll be flying the drone from one hospital to the other and also along an ‘urban canyon’ between the three rooftops.”

 

NRC Urban Wind Tunnel Eric

CHALLENGES

 

Flying in urban locations always requires additional caution. The research also demands very precise altitudes while capturing data – along with piloting with the anemometers attached to the drone.

Gathering the data always has its challenges – especially when operating over a dense downtown core such as Montreal,” he says.

“Many months of planning led to two days of successful data capture on July 26 and 27. One of the main challenges is maintaining C2 connectivity amongst the tall buildings. Another consideration is ensuring a proper center of balance with the added payload well forward of the aircraft. Resultingly, flight endurance is shortened due to the extra load on the motors and thus we had to modify our flight plans to account for this. We learned a lot during the first two days of data capture!”

For Dr. Saczuk, this is a particularly rewarding research project. Why?

Quite simply because it’s cutting-edge and involves RPAS,” he says.

“We have established a great relationship with the test facility at NRC and Transport Canada, so to know that InDro is involved in helping to understand the potentially adverse effects of flying RPAS around tall buildings for the purpose of making these flights safer feels very rewarding. Personally, I also enjoy challenging missions – and this may well be the most challenging mission I’ve ever flown!”

Below: The M300, equipped with the anemometers and looking a bit like a Scarab beetle. The sharp-eyed will notice that the two anemometers are mounted vertically and horizontally

NRC Wind Tunnel Eric

INDRO’S TAKE

 

InDro Robotics has a long history of involvement with research projects and other partnerships with academia. We are particularly drawn to projects that might have a positive and lasting impact on the industry-at-large, such as this one.

“Urban wind tunnels and turbulence have the potential to disrupt even a well-planned RPAS mission,” says InDro CEO Philip Reece. 

“As we move toward more routine drone flights in urban centres, it’s important to capture solid data so that evidence-based decisions can be made and Best Practices evolve. This research will prove valuable to the Canadian RPAS industry – by helping to ensure safer urban drone operations.”

The research is ongoing; we’ll provide updates when further milestones are hit.