Wisk promises autonomous Advanced Air Mobility

Wisk promises autonomous Advanced Air Mobility

By Scott Simmie

 

If you’ve been following our posts, you’ll know that InDro Robotics was part of a Canadian trade delegation that visited California last week. Some 40 organisations took part – including private companies, airports, academics, Transport Canada, NAV Canada and the National Research Council Canada. The trip was organised by Canadian Advanced Air Mobility (CAAM), the organization that speaks with a unified voice on behalf of industry and others with a vested stake in the coming world of AAM.

California was chosen because it’s home to three of the leading companies in the Advanced Air Mobility space: Joby, Archer and Wisk. It’s also home to the NASA Ames Research Center – which is working closely with industry on multiple technical issues as the world of AAM approaches. Last week, we shared highlights of our visits at Joby and Archer with this post (which we’d encourage you to read for context).

Today’s post? It’s all about Wisk, the final air taxi company the delegation visited. And its vision?

“Creating a future for air travel that elevates people, communities, and aviation.”

Unlike Joby and Archer – which plan to launch with piloted aircraft – Wisk differentiates itself with its “autonomous-first strategy.” That means, once it has attained all the necessary FAA certifications, the first passengers will climb on board an aircraft that flies itself. An autonomous aircraft carrying human beings? That’s a really big deal.

“When we’re successful at certifying this aircraft, that has the potential to change so much more beyond Wisk,” explained Becky Tanner, the company’s Chief Marketing Officer. In fact, she believes it will have an impact on the broader aviation industry, encouraging it to “take a step forward.”

Wisk is currently flying its sixth-generation full-sized aircraft. Its first generation was autonomous, but the following two were piloted.

“We made the conscious choice from Generation 3 to Gen 4 to stick with autonomous aircraft,” says Chief Technical Officer Jim Tighe. He points to the Generation 6 (which they call “Gen6”) on the floor.

“There will never be a pilot in that aircraft,” he says.

Below: Wisk’s Gen6 – the latest iteration of its autonomous air taxi designed to carry four passengers

 

 

Wisk Gen6 Autonomous Air Taxi

THE DESIGN

 

Like Joby and Archer, Wisk’s basic design is a fixed-wing eVTOL that uses tilt-rotors on booms attached below the wing. Two motors are on each of those six booms. The forward motors have tiltable five-blade rotors that allow them to transition for more efficient forward flight. These motors are in use throughout the flight – takeoff, landing, hover, forward flight – and any other manoeuvres. The rear motors are used for the VTOL portions of flight but are turned off once Gen6 has transitioned to forward flight.

Gen6, as you perhaps guessed, is the sixth full-size aircraft that Wisk has designed and built. And, like Generations 1, 4 and 5 it’s fully autonomous. That feature eliminates the possibility of pilot error.

“It’s obviously a differentiator,” says Tighe. “But we really believe that autonomy will enable safety. These are challenging operations. Short distance flights, you’re doing a lot of takeoffs and landings and you’re doing it in congested airspace.”

Building a completely autonomous aircraft is difficult. But it’s especially challenging – and rewarding – when you have to invent required components.

“When we first started, most of these systems did not exist – so we had to build them ourselves,” CTO Tighe told the Canadian delegation. That included motors, highly optimised batteries, flight control systems and much more. The company now holds 300+ patents globally and has carried out more than 1750 test flights with full-scale aircraft.

“It’s really important to design systems that meet our challenges for design, safety, weight and performance requirements,” he said, adding “It’s a lot easier if you can work on it yourself.”

Tighe, who dresses and speaks casually, comes with an impeccable background. After his first few years working with Boeing as an Aerodynamics Engineer, he worked as Chief Aerodynamicist for 14 years at Scaled Composites. That was the Burt Rutan company known for an incredible number of innovative aircraft and world aerospace records.

But Scaled’s jewel in the crown came right in the midst of Tighe’s tenure. The company designed and built SpaceShipOne and mothership White Knight. SpaceShipOne was a crewed, reusable suborbital rocket-powered aircraft that was carried to 50,000′ AGL while affixed beneath White Knight. When it was released, SpaceShipOne ignited its rocket engine, which took the small aircraft to the edge of space (100km). By accomplishing this feat twice within two weeks, Scaled Composites won the $10M Ansari X Prize. The technology, which includes a feathered system where the wing of the spacecraft rotates for optimal atmospheric entry, is core to the Virgin Galactic space tourism program. Tighe left Scaled Composites in 2014, moving directly to Wisk – a job he describes as “really fun if you’re an engineer.”

Below: The Gen6, which is capable of carrying four passengers of all shapes and sizes, including passengers with mobility issues

 

 

Wisk Gen6

AUTONOMY

 

Autonomy isn’t just about the technology (though we’ll get to that). It’s also part of a strategic business model in a market sector that will undoubtedly be competitive. Both Joby and Archer will initially have piloted models, meaning one of the four seats will be taken by the pilot. That not only costs more (to pay for the pilot), but also means losing revenue for one passenger on every single flight.

But will passengers embrace flying without a human at the controls? Wisk believes so, and says it puts great emphasis on safety. And here, it has some help: Wisk became a fully-owned subsidiary of Boeing in 2023 (though it operates separately). Some 150 Boeing employees are directly involved with the Wisk operation. That relationship, says the Wisk website, “allows us to tap into Boeing’s development, testing and certification expertise, and more.”

And on the autonomy front? In addition to its own inventions, Gen6 relies heavily on tried and true systems like autopilot. It’s self-flying approach includes, according to its website:

  • “Leveraging the same proven technology that accounts for more than 93% of automated pilot functions on today’s commercial flights (autopilots, precision navigation, flight management systems, etc.)
  • “New, innovative technology such as improved detect and avoid capabilities, sensors, and more
  • “Wisk’s logic-driven, procedural-based, decision-making software which provides reliable, deterministic outcomes.”

What’s more, Wisk already has a highly integrated system that allows human flight supervisors to track missions from the ground and monitor aircraft systems. Those flight supervisors will have the ability to intervene remotely, should that ever be required. It’s anticipated that, initially, one supervisor will be responsible for monitoring three missions simultaneously. Wisk offered a simulated demonstration of this system – which already looks pretty mature.

The location the delegation visited was in Mountain View, CA. This Bay Area campus is responsible for engineering, composite assembly, airframe assembly, motors, its battery lab, autonomy lab and is home to the corporate team. In addition, Wisk has additional locations in the US, Canada (Montréal), Poland, Australia and New Zealand. Its flight tests and R&D are carried out in Hollister, CA. The company currently has about 800 employees (including 50 in Montréal).

 

SUSTAINABLE AND ACCESSIBLE

page1image1075603648 page1image1075604000

One of the many impressive things about Wisk was its emphasis on design. Engineers have worked hard to reduce the number of moving parts in the aircraft – points of failure – to the point where there no single mechanical or software problem could take the aircraft out of the sky. But equally impressive was its commitment to design.

Beyond ensuring everything is comfortable, ergonomic and safe for passengers – a great deal of work has gone into ensuring any Wisk aircraft will be accessible for people of all shapes and sizes and even with disabilities. Wisk has an ongoing program where civilians with physical or sensory limitations are brought into the lab to try out the latest iteration of the cabin and offer feedback for improvement. For example, there’s Braille in the cabin and on the flight safety cards. And, when it was discovered that a guide dog was fearful of the metal steps for climbing up and into the cabin – they redesigned them to be easier on the paws. The guide dog happily climbed aboard the redesigned steps on a subsequent visit.

In conjunction with making the service affordable, this philosophy is something Wisk emphasised during the visit.

“The big vision of this is to have this accessible for everyone,” said CMO Becky Tanner. “Making sure this feels comfortable and enjoyable and safe for all kinds of people – people with disabilities, people with different heights, shapes and sizes.”

Below: InDro’s Scott Simmie (front right) inside Gen6. InDro’s Dr. Eric Saczuk, who was attending on behalf of BCIT’s RPAS Hub (which he directs) is in the seat behind him. Dr. Saczuk is also InDro’s Chief of Flight Operations

 

Scott and Eric on Wisk Gen6

INDRO’S TAKE

 

Before we get into our view of this world, it’s also worth mentioning that the delegation had the privilege of touring the NASA Ames Research Center. We saw, among other things, a high-end simulator purpose-built for testing eVTOL flight in congested urban airspace – as well as top-level research into developing predictive models for turbulence at the coming vertiports – where these vehicles will takeoff and land.

“The worlds of Advanced Air Mobility and Urban Air Mobility are definitely coming. This is truly going to be an inflection point in aviation, and we foresee many positive use-case scenarios beyond air taxis that these technologies will enable,” says InDro Robotics Founder and CEO Philip Reece.

“It was highly instructive to get a front-row seat with these industry leaders, and we thank CAAM for its foresight in planning and executing this important trip. InDro will have some announcements of its own for the AAM space – both for service provision and more – down the road.”

We look forward to these companies gaining their final FAA Certifications – and seeing these aircraft carry passengers and eventually cargo.

Canadian delegation sees the coming future of Air Taxis and Advanced Air Mobility

Canadian delegation sees the coming future of Air Taxis and Advanced Air Mobility

By Scott Simmie

 

It’s one thing to hear all the buzz about Advanced Air Mobility. It’s quite something else to see it.

A Canadian delegation representing some 40 organisations (including private companies, academia, airports, Transport Canada, NAV Canada and the National Research Council) is currently in the midst of a trade mission to California, visiting leaders in the AAM space. The trade mission was organised by Canadian Advanced Air Mobility (CAAM) – the organization that speaks with a unified voice on behalf of the emerging industry in Canada.

The coming world of Advanced Air Mobility will mark a huge inflection point in the world of aviation, especially in urban centres. Sustainable and transformational aircraft that use batteries or hydrogen as a fuel source will transport people and critical supplies over large urban areas and to nearby regions that are currently underserved by traditional aviation. They takeoff and land vertically, meaning they don’t require runways. Most designs transition to forward flight and incorporate a fixed wing for greater efficiency and range. Use-cases could include transporting patients, organs and medicines between hospitals, or delivering critical supplies in a disaster scenario.

But perhaps the biggest immediate market – and one you’ve undoubtedly heard of – is for these vehicles to serve as air taxis. Let’s say you’re downtown in a big congested city like New York, LA or Toronto. You need to get to the airport, but don’t want to spend 60-90 minutes in traffic. Three large companies in California – Joby Aviation Inc., Archer Aviation, and Wisk are leading the industry. And they are laser-focussed on this particular market sector.

All three envision a scenario similar to this in your future: Using an app on your phone, you’ll one day be able to book both a car rideshare and a flight at the same time. The car will drop you at the nearest vertiport, where an air taxi will await you and several other passengers. You’ll climb in, stow your luggage, and head to the airport (or some other popular high-volume destination). The companies predict after the market settles you’ll pay about the same as an Uber X for the privilege, but will reach your destination in a fraction of the time.

And time, says Joby’s lead on Corporate Development and Partnerships, is ultimately the key value proposition.

“(Joby has a) Deep alignment to sustainably give people time back – to spend it with the people who matter most,” Vinay Patel told the trade mission at the start of its tour on Tuesday.

And, as the delegation saw, Joby appears to have the technology to do precisely that.

Below: The CAAM-led delegation watches a Joby demonstration flight. Image courtesy of Joby via LinkedIn

Joby CAAM demo, Joby image

JOBY

 

Joby was the first stop for the Canadian trade delegation. All members of the mission signed NDAs, so there’s a limit to what we can reveal here. What we can say – and this applies to all three companies – is that the hype is real. Though there are still FAA certification hurdles to overcome and production to scale, these aircraft are indeed transformative and will someday change both our skies – and our experience of flying. Depending on your city and your destination, spending precious time in gridlock could become a distant memory.

One of Joby’s big selling points – in addition to the convenience and efficiency – is that these aircraft are quiet. When in forward flight, the company says tests have shown the sound pressure level is basically equivalent to a background conversation. During the demonstration, the aircraft took off vertically and went into hover for some specific manoeuvres. Vertical takeoff and landing are the loudest phase of flight.

During the demonstration, the aircraft was – and we’re giving you our best guess here – about 125 metres away. An Apple Watch registered a mere 73 decibels at peak, followed by a steady 67 dBa at hover. Plus, the aircraft did not have the unpleasant whine that often characterises multi-rotor vehicles. Joby and the other companies visited have all put a great emphasis (and countless engineering hours) into reducing the noise level of these aircraft. It’s something they know is an important factor for public acceptance, especially with plans for frequent flights in urban settings. Noise, based on this demo, will not be an issue when these roll out.

 

SOME COOL STUFF

 

There was no shortage of that. But a few things at Joby really stood out. The company is highly vertically integrated – meaning it manufactures nearly everything that goes into its aircraft. This allows it to, obviously, manufacture to its own specs and its own quality control standards. We were able to handle pieces of several 3D printed metal parts – which were unbelievably light. Keeping down weight, of course, extends both range and increases payload capacity – both of which are priorities.

“What makes Joby special is the vertical integration,” said Founder and CEO JoeBen Bevirt. “We’re leveraging the incredible advances in technology…to build dramatically more performant eVTOLs.”

The aircraft fuselage is made with composites, and automation is a factor whenever possible in its Pilot Production Plant in Marina, CA (a massive plant, capable of producing 500 aircraft per year, is being built in Dayton, Ohio). Though some parts are laid up by hand, the company uses specialised industrial arms to lay down pre-impregnated composite materials to extremely high tolerances. These robots are called AFP – Automatic Fibre Placement machines. Once the multiple layers have been precisely placed, the part is moved on its jig into a high-temperature autoclave that bakes it under pressure for many hours to ensure everything fuses to maximum strength. Ultrasonic testing is completed on these parts to ensure uniform quality and zero flaws.

There’s more. So much more. But Joby’s pilot factory, designed with the assistance of Toyota engineers (Toyota is a major Joby investor) appeared to be a model of efficiency. The company is expanding its production space at this location by another 225,000 square feet – to meet demand prior to that massive Ohio facility getting online. The company’s Integrated Test Lab links a simulator to a separate room where every single component of the aircraft is activated in real-time in response to inputs for testing and data acquisition and validation. It’s known as an “Iron Bird” – because it’s just the components and not the actual aircraft and does not fly. But wow, does it ever produce valuable data. Engineers can also throw faults its way to see how the system responds. 

If you look far to the future, said CEO Bevirt, air taxis are likely just the beginning of the transformation that will result from aircraft like these. They will connect regions that currently are underserved – or not served at all – by traditional aviation. And the technology advances? They, too, are predicted to have a much larger and positive impact on the broader aviation industry. New battery and charging technologies, new avionics, hydrogen fuel – these are all major disruptors, he says.

“This is just the tip of the iceberg,” he told the crowd.

Below: Joby isn’t the only company using an Iron Bird. Wisk also uses an Iron Bird for testing and improving the components and performance of its aircraft

ARCHER

 

The next stop, Wednesday, was a tour of the Archer facilities in San Jose. Like Joby, it’s well capitalised and on the cusp of a huge expansion. In December, it cut the ribbon on its new 400,000 square foot manufacturing plant in Covington, Georgia. Tooling load-in is underway, and by the end of the year the facility is scheduled to produce two aircraft per month. By 2030, that number is projected to be 650 aircraft per year.

Archer’s secret sauce is its proprietary electric motors. It is not chasing the vertical integration that is a hallmark of Joby, but instead purchases components it needs from manufacturers that already have these parts in FAA certified aircraft. It has partnerships with established companies like Honeywell, Safran and more. What’s unique in its path, said its head of Strategy and Business Development, is that “there are no science projects.”

MIDNIGHT

 

Its aircraft, called Midnight, has a total of 12 motors. Six sit on booms forward of the fixed wing and are tiltable for VTOL and forward flight. Six motors on the same booms but aft of the wing are fixed and used only for the VTOL portion of flight. Midnight logged some 400 flights in 2024 and flies pretty much every single day out of Salinas, CA.

The company has put a great deal of engineering into its battery technology, including thermal and electronic failsafes to either prevent or mitigate a thermal runaway. Each battery runs two diagonally opposed motors. So in the unlikely event of a battery failure, losing those two motors would still allow the aircraft to fly in a balanced mode.

Like all of these companies, full FAA certification is complex and will take time. But Archer is working closely with the General Civil Aviation Authority (GCAA) of United Arab Emirates. It has plans on the table to begin flights of Midnight in Abu Dhabi by the end of 2025, and hopes for FAA Type Certification in 2026.

Below: The Canadian Trade Delegation prepares to enter Archer’s lab, followed by an image of Midnight on a display in Archer’s lobby

INDRO’S TAKE

 

InDro will definitely be part of the coming world of Advanced Air Mobility, and has done extensive research in this area, including collaborations with the National Research Council, telcos, and academia. We have laid much of the groundwork for safe BVLOS flight in mixed airspace and will be delivering medical and other critical supplies – both in urban areas and also to under-serviced regions down the road. We obviously have no plans to build an air taxi, but will be deploying drones with heavy lift and extended range capacities. Seeing these companies in California really helped solidify what this future is going to look like, and we embrace it.

“Building companies like these takes immense capital, engineering, and vision. InDro congratulates Joby, Archer and Wisk and looks forward to their deployment,” says InDro Founder and CEO Philip Reece.

“We also have concepts underway that will leverage our extensive experience in autonomous ground robots – which we believe will lead to products that could further aid efficiencies for companies like these. We look forward to revealing them down the road. We also thank the team at CAAM for putting together this valuable trade mission.”

Stay tuned. You’ll hear more about Wisk – and the NASA AMES Research Center – next week.

InDro joins Canadian Advanced Air Mobility trade mission to San Francisco

InDro joins Canadian Advanced Air Mobility trade mission to San Francisco

By Scott Simmie

 

InDro Robotics is pleased to announce it is part of a delegation heading to the US next week in a trade delegation organised by Canadian Advanced Air Mobility, or CAAM. As Canada’s federal industry association for AAM, CAAM is the nation’s unified voice in the sector, working with industry and regulators to advance the path toward the coming world of Advanced Air Mobility.

You’ve likely heard about AAM by now. But just in case, here’s a quick and high-level refresher: Technology advances of the past decade have led to what are often referred to as transformational aircraft. These run the gamut from large and autonomous cargo drones through to what are commonly called air taxis – electrically powered eVTOL (including standard multi-rotor, fixed-wing VTOL, tilt-rotor and other innovative designs) intended to carry humans and cargo. Nearly all of these aircraft are electrically powered and sustainable, while some involve hybrid designs with fuel-powered generators supplying or topping up electrical power for the motors. You can also throw smaller drones into the mix, as they will be sharing airspace and taking on newer use-case scenarios involving autonomous, Beyond Visual Line of Sight flight in urban settings.

 

VALUE PROP

 

These aircraft will fulfil a number of important use-case scenarios. For example, they will transport people or cargo to areas that currently do not have airports. They will also move goods and humans quickly across large urban areas. Minimal infrastructure is needed for these VTOL aircraft. Rather than an airport, these devices will take off and land from “vertiports” similar to helicopter pads.

People or critical supplies can be transported efficiently and sustainably to places that were previously not an option for traditional aircraft – and where the cost or availability could not justify helicopter flights. They will transport critical medical supplies between hospitals in a fraction of the time ground transport would require. Smaller drones might deliver devices like Automated External Defibrillators, Epipens or life-saving medications in emergencies.

Plus, of course, air taxis will carry people across major urban centres or to nearby satellite regions. Eventually, it’s envisioned you’ll be able to hail one of these machines the same way you call an Uber – and your pickup spot will be a vertiport.

This future isn’t coming immediately, as Federal Aviation Administration Type certifications are still underway. But it most definitely is coming. Several companies – which the CAAM delegation will visit – are leaders in the air taxi space, with fully functional aircraft they plan to put into operation once FAA certification is complete.

As for the FAA? The US regulator is fully onboard with this new era but obviously wants to ensure the integration between traditional aviation and these transformational vehicles is safely achieved. To that end, it has already released a blueprint for how it envisions this mixed air traffic will play out:

THE US LEADERS

 

A number of US companies are at the vanguard of this new era, designing and testing aircraft that are very close to being production models. And CAAM, led by Executive Director JR Hammond, has pulled together a trip that will allow delegates to meet with several of the key players based in San Francisco. The mission will have onsite visits and – pending weather – observe demo flights at the following AAM leaders:

 

WISK

 

This company has built what it describes as the “world’s first self-flying, all-electric, four-seat air taxi.” Its current model, called Generation 6, “is the world’s first all-electric, autonomous, four-seat eVTOL (electric vertical takeoff and landing) air taxi designed for passenger transport. Our larger, spacious new aircraft provides more space for passengers and their luggage, and ensures that our service is accessible for those with disabilities.”

The unique design incorporates both eVTOL and a fixed wing for range. Its eight tiltable robots enable vertical take-off and landing. Once in the air, those rotors tilt forward for the transition into more efficient fixed-wing flight. Range is 144 kilometres (90 miles), traveling at speeds up to 120 knots. Generation 6 can recharge in a scant 15 minutes, allowing for rapid turnaround. This is a fully autonomous aircraft with multiple redundant safety features, and with human oversight from the ground. WISK is a fully owned subsidiary of Boeing, and has been in operation since 2010.

Below: The WISK Generation 6

WISK Generation 6

JOBY

 

The CAAM delegation will visit another leader in this space, Joby Aviation. Its six-rotor piloted aircraft is designed to carry four people, and also employs tilt rotors and a fixed wing. It’s also fast – capable of speeds up to 320 km/hour (200 mph). Despite the six large rotors, Joby has put considerable engineering effort into one of the downsides of multi-rotors: Noise.

According to Joby, its aircraft is as “quiet as a conversation.” And they’re not the only ones saying it. The company websites quotes Aviation Week’s Guy Norris as saying: “The aircraft made only a partially perceptible sound that, in this editor’s view, would almost certainly be undetectable against the everyday noise background of an urban environment.” So that’s a big bonus.

Though there will undoubtedly be many useful routes once this aircraft is certified and integrated into US airspace, its website envisions flights such as from a downtown vertiport in New York City to JFK airport. Driving by car, says Joby, takes 49 minutes; flying gets you there in seven minutes.

The company is in the midst of testing and certification with the FAA, and has completed the first three of five stages in that process. Joby has flown more than 50,000 km on its full-scale prototype and Toyota has announced it will be investing US $500M into the company in 2025.

Below: Joby takes flight

ARCHER

 

The third air taxi company on the agenda is Archer. In 2024, the company received its Part 135 Air Carrier & Operator Certificate from the FAA – one of just two air taxi manufacturers globally to have announced receipt of that certificate. Its “Midnight” aircraft is currently undergoing FAA Type certification. The company has delivered an aircraft to the United States Air Force – the first of a potential six in a contract worth up to US $142M. It is planning to begin trials in India shortly, with other venues on tap.

All of these air taxis have interesting designs, but Midnight is particularly intriguing. It has six tilt-rotors forward of its fixed wing, and an additional six fixed rotors aft of that wing. So a total of 12 rotors lift and land Midnight vertically, while the six tilt-rotors make the transition to and provide thrust for forward flight. The tips of the tilt-rotor propellors are flexed backwards to reduce noise.

 

NASA

 

In addition to visiting the three above companies, the CAAM delegation will also spend a day at the NASA AMES Research Center. That visit will include seeing NASA’s Vertical Motion Simulator, an Advanced Air Mobility simulation, a live demonstration of an eVTOL AAM vehicle, and plenty of discussion around the implications and challenges of this new phase in global aviation.

In addition to CAAM, there will be 33 companies, regulators and research institutes on the trip. These include Transport Canada, NAV Canada, the National Research Council – as well as such established companies as CAE, Kongsberg Geospatial, and NGC Aerospace.

“This trip represents a tremendous opportunity for Canadian entities in this sector to meet with some of the leaders in the AAM world and see their technologies up close,” says CAAM Executive Director JR Hammond.

“But just as importantly, it gives these leading AAM companies a chance to learn about the incredible Canadian companies that are in or adjacent to this space and explore potential partnerships down the road. We are incredibly excited about this trip.”

Below: The Archer Midnight hits a major milestone in June of 2024, with its first transition flight. It’s a longer video, but a cool one

INDRO’S TAKE

 

The world of Advanced Air Mobility is coming. And InDro is pleased to be taking part in this CAAM-organized event.

InDro has long worked to advance the concept of integrated airspace, carrying out a broad variety of research in concert with Transport Canada and the National Research Council in areas ranging from Detect and Avoid technologies through to testing urban wind tunnels to help with prediction models and future standards for urban RPAS flight. We’ve even tested and mapped the strength of 5G signals at various altitudes in urban environments to ensure robust connections for future autonomous flights over cities and potential UTM systems.

We have concrete plans for deliveries of critical supplies, including deploying heavy-lift and long-range drones – which will be part of the AAM space. And, with our expertise in designing and building autonomous mobile robots, we foresee other opportunities.

“The future of AAM is all about automation, including autonomous flight and an eventual automated Uncrewed Traffic Management (UTM) system that will ensure safe flights within corridors and minimise any potential for conflict with traditional aviation,” says InDro Founder and CEO Philip Reece.

“As part of that automated future, InDro is currently exploring AMRs that will autonomously assist with tasks like cargo loading and offloading, repositioning aircraft on the ground, and more. We look forward to working with AAM clients to build robust solutions in this space.”

We’d also like to mention that this trade mission was made possible through the CanExport Program by the Government of Canada’s Trade Commissioner Service.

Interested in this sector? Stay tuned; we’lll be sending reports from the field.