InDro’s new Street Smart Robot built to keep cyclists safe in winter

InDro’s new Street Smart Robot built to keep cyclists safe in winter

By Scott Simmie

 

If you’re in the Northern Hemisphere, Winter is Coming.

And if you’re a diehard cyclist, that also means you’re going to face challenges beyond the cold. Bike paths – just like the adjacent roads – can get mucked up with potholes, ice, and (like your driveway) blocked when a snowplow makes an errant dump.

In the future, cities will have a new tool at their disposal to help ensure cyclists can have the best thoroughfares possible in the depths of winter. It’s called the Street Smart Robot, and it was designed and built by the InDro Robotics engineering team at Area X.O in Ottawa. We believe it’s a great example of how robotics can help make future Smart Cities safer, more efficient, and more liveable for all of us.

It was a complex build from the ground up, requiring a lot of work on Machine Vision and obstacle detection and avoidance. Here’s a sneak peak we released while development was still underway:

 

FUNDING

 

Research and Development companies like ours are often fortunate enough to receive funding to assist with projects like these. Our concept for the Street Smart Robot caught the attention of the Ontario Vehicle Innovation Network (OVIN). Its website describes the agency as “Ontario’s flagship initiative for the automotive and mobility sector…driving economic development and catalyzing a future that builds safer, cleaner, and more efficient transportation.”

OVIN committed $465,000 to the SSR project.

“With a world-class innovation ecosystem, Ontario continues to lead in the development of new mobility technologies and solutions,” said Vic Fedeli, Minister of Economic Development, Job Creation and Trade in our news release about the project. “InDro Robotics’ prototype Smart Street Robot represents the best of our province’s cutting-edge tech research and development that is creating solutions for real-world challenges, and we congratulate them on this milestone.”

OVIN also weighed in:

“Ontario is home to innovators and game-changers that are shaping the future of mobility on the global stage. The growth of multi-modal transportation, combined with weather-related challenges, presents a unique opportunity for Ontario companies to commercialize leading-edge solutions that make our roads safer and travel more efficient,” said Raed Kadri, Head of OVIN. “This groundbreaking technology showcases the unparalleled caliber of Ontario SMEs in addressing significant mobility challenges—and more broadly, the province’s capacity to foster innovation and accelerate their time to market.”

 

NETWORKING

 

Robots like the SSR require more than just good sensors and compute. They also require an exceedingly reliable 5G network in order to accommodate the dense data throughput required. Here, we partnered with Rogers Communications for networking hardware and technical support.

“Rogers is proud to work alongside InDro Robotics and OVIN to improve public safety,” said Tom Turner, President, Rogers Business. “By leveraging the Rogers 5G Hybrid Wireless Private Network, we’re able to help build safer communities through real-time detection and reporting.”

Robust, high-speed networks are crucial for Smart Cities – where a multiplicity of interconnected devices will be constantly relaying data. This will be especially true as more connected and autonomous vehicles like the Street Smart Robot start sharing roadways (or bicycle paths) with people and other traffic..

“The Street Smart Robot is designed to greatly enhance the safety of bicycle lanes, particularly during winter. InDro is pleased to have partnered with Rogers and OVIN on this endeavour,” says InDro Robotics Founder/CEO Philip Reece.

Below: The SSR incorporates LiDAR and 3D depth cameras to help sense its surroundings – and to avoid cyclists, pedestrians and obstacles

Street Smart Robot LiDAR
Street Smart Robot

INDRO’S TAKE

 

This is actually just the beginning of the Street Smart Robot’s journey. This is the prototype version, and we are already looking at ways to further enhance the product prior to commercial deployment. We’ve learned, for example, that while the existing tread locomotion is great for heavy snow and ice that an all-wheel drive wheeled platform will provide greater agility and speed. We are also looking at a smaller and more human-friendly form factor.

That being said, our SSR V1 has proven itself for Simultaneous Localisation and Mapping (SLAM), as well as detecting hazards that could cause cyclists problems.

“Safer streets for everyone – including cyclists – are part of the Smart City of the future,” says InDro Robotics Founder and CEO Philip Reece. “The Street Smart Robot is an important step along that road.”

We’ll have more to say about our Street Smart Robot when we release V2 in the future. So stay tuned – and, if you’re cycling, stay safe.

Robots on earth help prepare for research on the moon

Robots on earth help prepare for research on the moon

By Scott Simmie

 

What could small robots on earth have to do with exploration on the moon?

Quite a lot, as it turns out. Professors and engineering students at Polytechnique Montréal have been busy writing algorithms and running experiments with robots and drones with one goal in mind: To enable them to explore unfamiliar and even hostile surroundings far beyond the reach of GPS or other forms of precision location technology.

“What we want to do is to explore environments including caves and surfaces on other planets or satellites using robotics,” explains Dr. Giovanni Beltrame (Ph.D.), a full professor at Polytechnique’s Departments of Computer Engineering and Software Engineering.

Before we get to the how, let’s address the why.

“Caves and lava tubes can be ideal places for settlement: They can be sealed and provide radiation shielding. There’s also a chance of finding water ice in them,” says Dr. Beltrame.

Of course, it’s also less risky – and less expensive – to send robots to other planets and moons rather than human beings. They don’t require life support, don’t get tired (with the exception of having to recharge), and they can gather and process data quickly.

Just think of all the data that’s been acquired on Mars by the twin Rovers and the Mars helicopter.

Below: A selfie taken by NASA’s Perseverance rover November 1, 2023, during the the 960th Martian day of its mission. The rover was built with a focus on astrobiology, searching for signs of ancient microbial life on the red planet. Image courtesy of NASA.

Mars rover Perseverance

PREPARE ON EARTH, DEPLOY IN SPACE

 

It’s a pretty ambitious vision. But for Beltrame and his team, it’s also very real. And it requires a lot of work and research here on earth.

“So to get there (space) and do this with multiple robots, we’ve developed all sorts of technologies – navigation, perception, communication, coordination between the robots, and human-robot interfaces,” he says.

“We’re doing all these things, because our goal is to use a swarm of robots to do planetary exploration. There’s more, but that’s it in a nutshell.”

When you go to the moon, there’s no equivalent of GPS. And environments like caves can be really tricky – both in terms of robots understanding where they are, and also communicating with other robots beyond line of sight.

With the right technologies and algorithms, that communication is possible. And much of Beltrame’s research has involved testing this on earth. In particular, he’s focusing on how groups of robots could take on such tasks collaboratively.

“So our primary activities focus on swarm robotics,” he says.

Generally that starts with simulation models. But there are limits to simulations – and real-world testing is a big part of what’s going on at Polytechnique.

“So we do have this deployment philosophy that we try our technologies in simulation, but then we want to go to deploying robots. You can have the best simulation in the world, but there’s still a reality gap and it’s very extremely important to try things on the real robots,” he says.

“We have a saying in the lab, which is: ‘Everything works in simulation’. You can always make your algorithm work in simulation, and then you get out in the field and things go wrong. So one thing we do in the lab is we always do the full stack. That’s why we need to have real robots. And we don’t only do experiments with real robots in the lab, we do them in the field.”

MIST

 

The lab he’s referring to is known as Polytechnique’s MIST, which stands for Making Innovative Space Technology. Dr. Beltrame is the director of the lab, which focuses on computer engineering targeted towards space technologies. In addition to the researchers, the lab is home to a *lot* of robots. There are big ones, small ones, wheeled ones, flying ones (drones) – literally “hundreds” of robots at the lab.

But as Dr. Beltrame emphasised, proving that something will truly work requires testing in environments that are similar to what might be found on the moon or elsewhere. Locations where he’s carried out fieldwork include:

  • Lava Beds National Monument in California (with NASA JPL)
  • The Kentucky mega-cave with the CoSTAR team
  • Tequixtepec in Mexico with SpéléoQuébec

Just check out the images below of field work, courtesy of Dr. Beltrame:

THE INDRO CONNECTION

 

Some of the robots used in the MIST lab – and perhaps eventually on the moon – arrived via InDro Robotics, a North American distributor for AgileX. In fact, Polytechnique has purchased a number of AgileX products, including platforms that InDro has modified to help speed the R&D process. These include:

  • 24 LIMOs and simulation table
  • AgileX Scout Mini
  • AgileX Scout 2.0
  • Two AgileX Bunker Mini platforms, with custom builds by InDro

We’ve written about the LIMO before – a small, affordable and versatile robot capable of perceiving its environment and even Simultaneous Localization and Mapping out of the box. It’s also an ideal size, particuarly when doing multi-agent/swarm robotics, for use in the lab. (You’d run out of space pretty fast with something much larger).

“The LIMOs are a very good platform for Simultaneous Localization and Mapping  – and perception in general,” says Beltrame.

He says they’re a good choice “because they have a 3D camera, they’re lighter, agile, and are sufficiently low in cost. So we can use them in large numbers. Another good thing about the LIMOs is that once you have a lot of similar robots that are reasonably agile, you can actually make a full deployment of software (across all robots).”

That makes them an ideal platform for multi-agent research and development.

“For example, we developed this tool called Swarm SLAM where many robots collaborate to have a better perception of the environment. We’re currently testing it with the full fleet of LIMOs. That’s something we would have believed impossible with larger robots for logistical reasons.”

Though the focus is firmly on space, the Polytechnique Montréal research has applications on earth. Swarms of robots could aid in disaster response, Search & Rescue, and more.

 

FAVOURITE ROBOT

 

The LIMO isn’t the only AgileX product in Polytechnique’s stable. And while Beltram likes all of them, he has a soft spot for one in particular.

“I would say that my favorite robot is the Scout Mini,” he says. “It’s fast, it’s agile and the control is extremely precise.”

In fact, Beltrame often takes the Scout Mini with him when doing school presentations. It’s small enough to be carried in the trunk of his car and hand-carried to classrooms. His team has also used the platform to test a new code for path planning and sophisticated energy calculations. It’s capable of tracking the additional energy required for climbing inclines, for example, then calculating when the robot needs to return home to wirelessly recharge.

As always, InDro works with clients to deliver precisely what they need. This saves time for those institutions and corporations on builds, allowing them to get on with the business of R&D.

“We’ve done quite a bit of integration for them,” says Luke Corbeth, InDro’s Head of R&D Sales.

“For example (see picture below), we provide a top plate with all required hardware mounted and integrated. They then add their own sensors, protective structure, etc. So this is a great example of how we work with clients on a case-by-case basis depending on their needs as robotics isn’t one-size-fits-all.”

Polytechnique mini bunkers

ONE SMALL STEP…

 

With all of this research, what comes next? Will the work being done today at Polytechnique eventually find its way off this planet?

“The answer is it’s going to happen very soon,” says Beltrame. Sometime later this year, a rocket will head toward the moon carrying three small robots. It’s called the Cadre mission.

A trio of small rovers will work as a team to explore the moon autonomously, mapping the subsurface in 3D, collecting distributed measurements, and showing the potential of multirobot missions,” says NASA’s JPL website. One of Beltrame’s students is working on that mission with JPL.

“This is one example of how the work that we’ve been doing in this lab, in the end – through students that were here – become real missions,” says Beltrame.

And that’s not all. As early as 2026, a Canadian-built rover could land on the moon in Canada’s first moon mission.

Its task? To explore the moon’s south polar region in search of “water ice.” This ice is critical to long-term human habitation on the moon – and can also be converted to fuel, both for energy on the moon and potentially to refuel other spacecraft with destinations further afield.

“I have an engineer from the Canadian Space Agency that’s a student of mine that’s developed the Mission Planner. So the idea is that we – our lab – developed the Mission Planner for the Canada rover that’s going to the moon.”

Here’s a look at that planned mission, from the CSA:

 
 
 

AND THERE’S MORE

 

There was some big news this week from Polytechnique Montréal. On January 24 it announced the formation of ASTROLITH, a body for “research in space resource and infrastructure engineering.”

It’s the first Canadian group dedicated to lunar engineering, according to a news release.

Comprising experts from all seven Polytechnique departments, ASTROLITH will pursue the mission of helping to develop next-generation technologies and training the engineers of tomorrow to ensure Canada’s presence in space and lunar exploration, as well as addressing critical needs on our planet within the context of climate change, resource management and sustainable development,” reads the release.

So while the emphasis is on the moon, ASTROLITH will also result in some very practical – and urgent – use-cases on our home planet.

“As encapsulated in its Latin motto Ad Lunam pro Terra, ASTROLITH is dedicated to developing technologies with direct impacts here on Earth: enabling development of infrastructure in the Far North or facilitating the energy transition, for example,” says the release.

“Indeed, the research unit’s founding members are already involved in developing technologies in various areas related to space and extreme environments, from design of resilient habitats and infrastructures for remote regions to deployment of cislunar communications technologies to development of advanced robotics systems for prospecting and mining, among many others. Their work is bolstered by contributions from specialists in life-cycle analysis, sustainable development and space-related policy development.”

The team is composed of academics and researchers that span all seven Polytechnique departments. Beltrame, not surprisingly, is on the team – which is pictured below. (He’s in the back row, centre.)

 

INDRO’S TAKE

 

We find the work being carried out at Polytechnique Montréal, the MIST lab – and now ASTROLITH – both fascinating and important. It’s also a terrific example of how dedicated researchers and students can develop and test projects in the lab that eventually have real-world (and off-world) applications.

“I’m incredibly impressed with the work being carried out here, and the fact it can be put to positive use-cases both on earth and in space,” says InDro Robotics CEO Philip Reece.

“We wish Dr. Beltrame and his colleagues well, and we’ll certainly be watching these lunar missions with great interest. It’s always a pleasure when InDro can support teams doing important work like this.”

You can find more about the MIST lab here. And if you’d like to talk about AgileX robots (or any other robotic solution), connect with an InDro expert here

TCXpo brings Canada’s Smart Mobility leaders to Area X.O September 27

TCXpo brings Canada’s Smart Mobility leaders to Area X.O September 27

By Scott Simmie

 

Canada’s premiere exhibit and demonstration of Smart Mobility technologies is coming up soon – September 27, to be precise. And InDro Robotics will be one of scores of Canadian companies demonstrating innovative products and processes.

This is the second TCXpo since its inauguration in 2022.

“TCXpo will bring together hundreds of innovators, entrepreneurs, technology developers, industry leaders, regulators, smart mobility partners and stakeholders from Canada’s Capital and across the country,” explains the Area X.O website.

“In partnership with Transport Canada (TC), Innovation, Science and Economic Development Canada (ISED), FedDev Ontario and event sponsors, TCXpo will bring together more than 70 Canadian companies to host live technology demonstrations at Area X.O. TCXpo will create an exclusive opportunity for invited guests to experience the power and impact of cutting-edge Canadian technologies, including many preparing for global markets.”

InDro is pleased to be participating – and we’ve got a lot of cool things lined up for the show.

Here’s a look at a few highlights from last year’s event – including some of the really intriguing technologies on display:

InDro at TCXpo

 

Before we get into what InDro will be up to, it’s worth explaining the name of the event. “TC” stands for Transport Canada, which is a lead sponsor of the event. The regulator is interested, obviously, in the field of Smart Mobility – including drones, autonomous passenger-carrying vehicles and ground robotics. These technologies will all play increasing roles in the future, eventually becoming blended with existing infrastructure and traditional ground and air transportation.

The “X” stands for the location – Ottawa’s Area X.O.

Operated by Invest Ottawa, Area X.O is a research and development complex that is home to some of Canada’s leading R&D companies in the Smart Mobility space (including InDro Robotics). The facility is tailor-made for companies working on next-gen technology, complete with its own 5G network and private roads that can be used by Connected and Autonomous Vehicles. For companies building and testing next-gen technology, there’s nothing like being able to take robots and drones under development directly outside for test runs. It’s routine, when visiting Area X.O, to see all manner of robots and driverless vehicles being tested. It’s also where InDro has located its R&D headquarters, with a large engineering team.

 

WHAT INDRO WILL BE SHOWING

 

We’ve got quite a few things on tap for TCXpo.

We’ll be demonstrating a number of robots InDro has developed, including Sentinel. The teleoperated workhorse has been designed for remote monitoring and surveillance. It’s ideally suited to locations like electrical substations, which are normally located far from urban centres and would generally require a human being to travel to the site for regular check-ups. With robots like Sentinel, an operator can control the robot via a dashboard from hundreds or even thousands of kilometres away.

Thermal and close-up visual inspections can be carried out to look for any anomalies – without the time and expense of dispatching a person. Once the inspection is complete, Sentinel can automatically dock with a wireless charging system so that it’s ready for the next mission.

Though we’ve demonstrated Sentinel in the past, this year we’ll be showing new capabilities with its GPS Waypoint Autonomy software. This enables an operator to set up a repeatable routine using waypoints, allowing Sentinel to carry out missions with a human simply monitoring operations rather than remotely operating them.

Below: Sentinel, equipped with InDro Commander

 

Autonomous Robot

STREET SMART ROBOT

 

This is under wraps until TCXpo, but InDro Robotics will be unveiling a new Smart City robot, specifically designed to help monitor the conditions of bicycle lanes during winter. Whether it’s snow, ice, potholes or debris that might interfere with safe cycling, our Street Smart Robot will be able to detect problems so that city staff can be notified. We’ll be revealing details about this new creation – and you’ll be able to see it first-hand. A number of people have made comparisons with the design to the Tesla Cybertruck; we look forward to hearing your own impressions.

 

INDRO PILOT DEMONSTRATION

 

InDro Pilot is a hardware and software solution that literally gives superpowers to Enterprise Drones with Pixhawk flight controllers. Similar to InDro Commander, the hardware side includes a bolt-on module that contains a powerful EDGE computer, Robot Operating System (ROS1 and ROS2) software libraries, along with USB ports and power supplies to enable the rapid integration of other sensors.

But that’s not all. InDro Pilot has been designed to stream even highly dense data to the ground and cloud securely and simultaneously over 5G networks via a *really* high-speed modem. The software includes an easy-to-use dashboard for both manual and automated flights, including customizable windows for the output of each sensor.

Thinking about Beyond Visual Line of Sight flights? InDro Pilot is ready. Whether the operator is down the block or across the country, operations with virtually zero latency can be carried out over 5G. In addition, InDro Pilot includes a software-defined radio. This allows the automated broadcast of the drone’s altitude and position directly to nearby crewed aircraft over standard RF. In applications for Special Flight Operations Certificates, this capability is viewed as mitigating risk and making BVLOS safer.

Want to integrate additional sensors? No problem. The InDro Pilot software includes drag-and-drop modules for virtually any sensor you can imagine. Even a winch can be added – with the controls ready to go. The screengrab below is taken directly from our software. (If you’d like to take a deeper dive into the capabilities of the InDro Pilot system, you’ll find a comprehensive story here.)

INDRO FORGE

 

The other big development on our end recently has been an expansion. InDro Robotics and Invest Ottawa have formed a strategic partnership that sees InDro Robotics taking over the management and operations of the facility previously known as the Bayview Yards Prototyping Lab. The cutting-edge design and fabrication lab will now be known as InDro Forge – and will expand its offerings to include limited production runs and other specialty one-off fabrication.

The addition of InDro Forge to our portfolio means more options for inventors, entrepreneurs and Small to Medium Enterprises (SMEs) looking for assistance with the design and production of high-quality prototypes. Clients can literally walk in with a napkin sketch and work with the InDro Forge team toward a polished industrial design, followed by fabrication using some of the specialty on-site machines and processes. Those include:

  • CNC machining
  • Silicone and urethane casting
  • Multi-element 3D printing (including metal)
  • Electronics and Printed Circuit Board fabrication and analysis

Though InDro Forge is located at Bayview Yards, we’ll be talking about its capabilities at TCXpo. If you’re interested in a detailed look, ask us if we can line you up with a tour. (And if you’d like to read about InDro Forge in greater detail, check out this post.)

 

DARTT

 

Plus, don’t forget about DARTT – Canada’s only Drone and Advanced Robot Training and Testing facility. Located at Area X.O, DARTT is designed to put ground robots through tests that conform to the rigorous criteria established by the National Institute for Standards and Technology (NIST). There are multiple surfaces designed to challenge agility, Ingress Protection, and incline capabilities. There’s also a huge netted enclosure to safely pilot and test drones, including those with new or experimental features that might normally require an SFOC if flown outside the confines of DARTT.

Team InDro will be running demos at DARTT throughout the day, including offering TCXpo attendees the opportunity to remotely operate a ground robot – and even pilot a drone. InDro operates the DARTT facility, and can also carry out RPAS Flight Reviews and custom training at the site.

If you think DARTT sounds cool, you’re absolutely right. How cool? Well, take a look at this:

 

INDRO’S TAKE

 

TCXpo is a great place to showcase technology, and we’re looking forward to demonstrating our latest innovations. But there’s much more to see than just InDro.

“TCXpo is a tremendous event for Canada’s Smart Mobility space,” says InDro CEO Philip Reece. “Transport Canada, Invest Ottawa and other sponsors really understand the transformative potential of these technologies and want to help showcase the industry-at-large. We’re pleased to participate, along with scores of other companies in this emerging sector.”

It’s actually a pretty big week in Ottawa. The day after TCXpo, Area X.O will host the annual CAV Canada event, a day of demonstrations, knowledge-sharing and networking devoted to Connected and Autonomous Vehicles and the companies that power them. Philip Reece will be hosting a panel at this year’s CAV Canada.

Finally, if you’re interested in attending TCXpo, you can register for free right here.

 

D15 Digital Dialogues: Building an autonomous robot product on 5G Autonomous robots are positioned….

D15 Digital Dialogues: Building an autonomous robot product on 5G Autonomous robots are positioned to be a game changer for various enterprise segments such as manufacturing and logistics. Building the robot products on a 5G network furthers the opportunity to push their capabilities through increased productivity and safety while allowing for completely new features. The next generation of robots will be even more autonomous with robot-to-robot communication, human-robot collaboration, cloud robotics and seamless integration with external systems.